Abstract

Decarbonization of gas turbine combustion creates a pressing demand for new technical solutions for the combustion process. While switching to hydrogen fuels may solve the problem of carbon emissions and associated pollutants, it can also lead to stability issues for swirl-stabilized combustors due to its increased reactivity. However, with jet flame burner systems, the required flashback safety can be achieved with high axial flow velocities even for premixed combustion of 100% hydrogen fuel. The development of such an engineering solution, however, requires significant effort to reach the maturity of today's swirl burners. This study examines the capacity of a premixed multitube jet burner to manage the chemical reactivity change over a range of volumetric blends from pure natural gas (NG) to pure hydrogen fuel. NOx emissions are measured and analyzed for atmospheric tests. The changes in emissions originate not only from altered combustion chemistry but also from changes in flame shape and turbulence intensity. To get a deeper understanding of the NOx formation process, a low-order model is designed and compared to the experimental data of technically and perfectly premixed combustion tests. Parameter variations of the low-order model are conducted to assess the influences on the NOx emission production of the multijet burner. The information on the combustion process required for the model is obtained computationally and experimentally. Therefore, flame images are recorded and analyzed.

References

1.
Noble
,
D.
,
Wu
,
D.
,
Emerson
,
B.
,
Sheppard
,
S.
,
Lieuwen
,
T.
, and
Angello
,
L.
,
2021
, “
Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas Turbines Considering a Low-Carbon Future
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041002
.10.1115/1.4049346
2.
Funke
,
H. H.-W.
,
Beckmann
,
N.
,
Keinz
,
J.
, and
Horikawa
,
A.
,
2021
, “
30 Years of Dry-Low-NOx Micromix Combustor Research for Hydrogen-Rich Fuels—An Overview of Past and Present Activities
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071002
.10.1115/1.4049764
3.
Kroniger
,
D.
,
Horikawa
,
A.
,
Okada
,
K.
, and
Ashida
,
Y.
,
2022
, “
Novel Fuel Injector Geometry for Enhancing the Fuel Flexibility of a Dry Low NOx Micromix Flame
,”
ASME
Paper No. GT2022-83025.10.1115/GT2022-83025
4.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.10.2514/3.12980
5.
Ćosić
,
B.
,
Wassmer
,
D.
,
Kluß
,
D.
,
Jaeschke
,
A.
,
Reichel
,
T.
, and
Paschereit
,
C. O.
,
2022
, “
Experimental and Numerical Advancement of the MGT Combustor Towards Higher Hydrogen Capabilities
,”
ASME
Paper No. GT2022-82110.10.1115/GT2022-82110
6.
Magnusson
,
R.
, and
Andersson
,
M.
,
2020
, “
Operation of SGT-600 (24 MW) DLE Gas Turbine With Over 60% H2 in Natural Gas
,”
ASME
Paper No. GT2020-16332.10.1115/GT2020-16332
7.
Ciani
,
A.
,
Bothien
,
M.
,
Bunkute
,
B.
,
Wood
,
J.
, and
Früchtel
,
G.
,
2019
, “
Superior Fuel and Operational Flexibility of Sequential Combustion in Ansaldo Energia Gas Turbines
,”
J. Global Power Propul. Soc.
,
3
, pp.
630
638
.10.33737/jgpps/110717
8.
Koomen
,
J.
,
Dammers
,
T.
,
Demougeot
,
N.
,
Stuttaford
,
P.
,
Heinze
,
J.
,
Stockhausen
,
G.
, and
Fleing
,
C.
,
2022
, “
High Pressure Testing With Optical Diagnostics of a Hydrogen Retrofit Solution to Eliminate Carbon Emissions
,”
ASME
Paper No. GT2022-82652.10.1115/GT2022-82652
9.
Lammel
,
O.
,
Schütz
,
H.
,
Schmitz
,
G.
,
Lückerath
,
R.
,
Stöhr
,
M.
,
Noll
,
B.
,
Aigner
,
M.
,
Hase
,
M.
, and
Krebs
,
W.
,
2010
, “
FLOX® Combustion at High Power Density and High Flame Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
121503
.10.1115/1.4001825
10.
York
,
W. D.
,
Ziminsky
,
W. S.
, and
Yilmaz
,
E.
,
2013
, “
Development and Testing of a Low NOx Hydrogen Combustion System for Heavy-Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022001
.10.1115/1.4007733
11.
Lee
,
T.
, and
Kim
,
K. T.
,
2020
, “
Combustion Dynamics of Lean Fully-Premixed Hydrogen-Air Flames in a Mesoscale Multinozzle Array
,”
Combust. Flame
,
218
, pp.
234
246
.10.1016/j.combustflame.2020.04.024
12.
Kang
,
H.
, and
Kim
,
K. T.
,
2021
, “
Combustion Dynamics of Multi-Element Lean-Premixed Hydrogen-Air Flame Ensemble
,”
Combust. Flame
,
233
, p.
111585
.10.1016/j.combustflame.2021.111585
13.
Jin
,
U.
, and
Kim
,
K. T.
,
2021
, “
Experimental Investigation of Combustion Dynamics and NOx/CO Emissions From Densely Distributed Lean-Premixed Multinozzle CH4/C3H8/H2/Air Flames
,”
Combust. Flame
,
229
, p.
111410
.10.1016/j.combustflame.2021.111410
14.
Witzel
,
B.
,
Moëll
,
D.
,
Parsania
,
N.
,
Yilmaz
,
E.
, and
Koenig
,
M.
,
2022
, “
Development of a Fuel Flexible H2-Natural Gas Gas Turbine Combustion Technology Platform
,”
ASME
Paper No. GT2022-82881.10.1115/GT2022-82881
15.
Jaeschke
,
A.
,
Ćosić
,
B.
,
Wassmer
,
D.
, and
Paschereit
,
C. O.
,
2023
, “
Experimental Investigation of a Multi Tube Burner for Premixed Hydrogen and Natural Gas Low Emission Combustion
,”
ASME J. Eng. Gas Turbines Power
,
145
(
12
), p.
121010
.10.1115/1.4063378
16.
Beuth
,
J. P.
,
Reumschüssel
,
J. M.
,
von Saldern
,
J. G. R.
,
Wassmer
,
D.
,
Ćosić
,
B.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2024
, “
Thermoacoustic Characterization of a Premixed Multi Jet Burner for Hydrogen and Natural Gas Combustion
,”
ASME J. Eng. Gas Turbines Power
,
146
(
4
), p.
041007
.10.1115/1.4063692
17.
Zur Nedden
,
P. M.
,
Eck
,
M. E. G.
,
Lückoff
,
F.
,
Panek
,
L.
,
Orchini
,
A.
, and
Paschereit
,
C. O.
,
2023
, “
Flame Transfer Function and Emissions of a Piloted Single Jet Burner: Influence of Hydrogen Content
,”
ASME
Paper No. GT2023-103032.10.1115/GT2023-103032
18.
Asai
,
T.
,
Dodo
,
S.
,
Koizumi
,
H.
,
Takahashi
,
H.
,
Yoshida
,
S.
, and
Inoue
,
H.
,
2011
, “
Effects of Multiple-Injection-Burner Configurations on Combustion Characteristics for Dry Low-NOx Combustion of Hydrogen-Rich Fuels
,”
ASME
Paper No. GT2011-45295.10.1115/GT2011-45295
19.
Kang
,
H.
,
Yoon
,
C.
, and
Kim
,
K. T.
,
2023
, “
Experimental and Numerical Investigations of Forced Response of Multi-Element Lean-Premixed Hydrogen Flames
,”
Combust. Flame
,
258
, p.
113079
.10.1016/j.combustflame.2023.113079
20.
Dunn
,
M. J.
,
Masri
,
A. R.
, and
Bilger
,
R. W.
,
2007
, “
A New Piloted Premixed Jet Burner to Study Strong Finite-Rate Chemistry Effects
,”
Combust. Flame
,
151
(
1–2
), pp.
46
60
.10.1016/j.combustflame.2007.05.010
21.
Shaffer
,
B.
,
Duan
,
Z.
, and
McDonell
,
V.
,
2013
, “
Study of Fuel Composition Effects on Flashback Using a Confined Jet Flame Burner
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011502
.10.1115/1.4007345
22.
Kalantari
,
A.
,
Sullivan-Lewis
,
E.
, and
McDonell
,
V.
,
2016
, “
Flashback Propensity of Turbulent Hydrogen–Air Jet Flames at Gas Turbine Premixer Conditions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061506
.10.1115/1.4031761
23.
Hoferichter
,
V.
,
Mohammadzadeh Keleshtery
,
P.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
, and
Matsumura
,
Y.
,
2016
, “
Influence of Boundary Layer Air Injection on Flashback of Premixed Hydrogen-Air Flames
,”
ASME
Paper No. GT2016-56156.10.1115/GT2016-56156
24.
Douglas
,
C. M.
,
Polifke
,
W.
, and
Lesshafft
,
L.
,
2023
, “
Flash-Back, Blow-Off, and Symmetry Breaking of Premixed Conical Flames
,”
Combust. Flame
,
258
, p.
113060
.10.1016/j.combustflame.2023.113060
25.
Lee
,
J. G.
, and
Santavicca
,
D. A.
,
2003
, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
735
750
.10.2514/2.6191
26.
Higgins
,
B.
,
Mcquay
,
M.
,
Lacas
,
F.
,
Rolón
,
J. C.
,
Darabiha
,
N.
, and
Candel
,
S.
,
2001
, “
Systematic Measurements of OH Chemiluminescence for Fuel-Lean, High-Pressure, Premixed, Laminar Flames
,”
Fuel
,
80
(
1
), pp.
67
74
.10.1016/S0016-2361(00)00069-7
27.
Haber
,
L. C.
, and
Vandsburger
,
U.
,
2003
, “
A Global Reaction Model for OH* Chemiluminescence Applied to a Laminar Flat-Flame Burner
,”
Combust. Sci. Technol.
,
175
(
10
), pp.
1859
1891
.10.1080/713713115
28.
Garan
,
N.
,
Dybe
,
S.
,
Paschereit
,
C. O.
, and
Djordjevic
,
N.
,
2022
, “
Consistent Emission Correction Factors Applicable to Novel Energy Carriers and Conversion Concepts
,”
Fuel
, 341, p.
127658
.10.1016/j.fuel.2023.127658
29.
Biagioli
,
F.
, and
Güthe
,
F.
,
2007
, “
Effect of Pressure and Fuel–Air Unmixedness on NOx Emissions From Industrial Gas Turbine Burners
,”
Combust. Flame
,
151
(
1–2
), pp.
274
288
.10.1016/j.combustflame.2007.04.007
30.
Dederichs
,
S.
,
Zarzalis
,
N.
,
Habisreuther
,
P.
,
Beck
,
C.
,
Prade
,
B.
, and
Krebs
,
W.
,
2013
, “
Assessment of a Gas Turbine NOx Reduction Potential Based on a Spatiotemporal Unmixedness Parameter
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
111504
.10.1115/1.4025078
31.
Reumschüssel
,
J. M.
,
von Saldern
,
J. G. R.
,
Kaiser
,
T. L.
,
Reichel
,
T.
,
Beuth
,
J. P.
,
Ćosić
,
B.
,
Genin
,
F.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2021
, “
NOx Emission Modelling for Lean Premixed Industrial Combustors With a Diffusion Pilot Burner
,”
ASME
Paper No. GT2021-59071.10.1115/GT2021-59071
32.
Russo
,
F.
, and
Basse
,
N. T.
,
2016
, “
Scaling of Turbulence Intensity for Low-Speed Flow in Smooth Pipes
,”
Flow Meas. Instrum.
,
52
, pp.
101
114
.10.1016/j.flowmeasinst.2016.09.012
33.
Peters
,
N.
,
1999
, “
The Turbulent Burning Velocity for Large-Scale and Small-Scale Turbulence
,”
J. Fluid Mech.
,
384
, pp.
107
132
.10.1017/S0022112098004212
34.
Breer
,
B.
,
Rajagopalan
,
H.
,
Godbold
,
C.
,
Johnson
,
H.
,
Emerson
,
B.
,
Acharya
,
V.
,
Sun
,
W.
,
Noble
,
D.
, and
Lieuwen
,
T.
,
2023
, “
Numerical Investigation of NOx Production From Premixed Hydrogen/Methane Fuel Blends
,”
Combust. Flame
,
255
, p.
112920
.10.1016/j.combustflame.2023.112920
You do not currently have access to this content.