Abstract

Rotating detonation engines (RDEs) present a potential avenue for enhancing the efficiency of gas turbine combustors through the utilization of a detonation-driven process. However, integrating an RDE with a downstream turbine poses a significant challenge due to the shock-laden and highly unsteady nature of the RDE exit flow, coupled with a high degree of flow periodicity. In contrast, gas turbines are designed to operate with relatively small velocity and temperature fluctuations at the turbine inlet. The objective of this study is to develop an understanding of how geometric profiling can improve RDE performance and mitigate exhaust flow field unsteadiness. Three RDE designs are analyzed: an annular combustor with a constant cross-sectional area, an annular combustor with a converging nozzle near the exit, and an annular combustor with a rapid to gradual (RTG) area convergence. Three-dimensional (3D) unsteady reacting simulations are conducted for each configuration using the same fuel-oxidizer composition and mass flow rate condition. All simulations are validated against experimental measurements, and RDE performance is assessed based on total pressure gain/loss, unsteadiness at the exit of the RDE, and detonation effectiveness. Results show significant performance improvement for both the convergent nozzle and the RTG profile compared to the constant cross-sectional area configuration, and the RTG design performed better than the convergent nozzle design. Therefore, strategically constricting the flow in an RDE can be used to optimize the performance of an RDE and should be considered in future designs.

References

1.
Sousa
,
J.
,
Paniagua
,
G.
, and
Morata
,
E. C.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energy
,
195
, pp.
247
256
.10.1016/j.apenergy.2017.03.045
2.
Kailasanath
,
K.
,
2020
, “
Recent Developments in the Research on Pressure-Gain Combustion Devices
,”
Innovations in Sustainable Energy and Cleaner Environment
, Springer, Singapore, pp.
3
21
.
3.
Rankin
,
B. A.
,
Richardson
,
D. R.
,
Caswell
,
A. W.
,
Naples
,
A. G.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2017
, “
Chemiluminescence Imaging of an Optically Accessible Non-Premixed Rotating Detonation Engine
,”
Combust. Flame
,
176
, pp.
12
22
.10.1016/j.combustflame.2016.09.020
4.
Wintenberger
,
E.
, and
Shepherd
,
J. E.
,
2006
, “
Thermodynamic Cycle Analysis for Propagating Detonations
,”
J. Propul. Power
,
22
(
3
), pp.
694
698
.10.2514/1.12775
5.
Zel'dovich
,
Y. B.
,
2006
, “
To the Question of Energy Use of Detonation Combustion
,”
J. Propul. Power
,
22
(
3
), pp.
588
592
.10.2514/1.22705
6.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.10.1016/j.proci.2012.10.005
7.
Ma
,
J. Z.
,
Luan
,
M.-Y.
,
Xia
,
Z.-J.
,
Wang
,
J.-P.
,
Zhang
,
S.-J.
,
Yao
,
S.-B.
, and
Wang
,
B.
,
2020
, “
Recent Progress, Development Trends, and Consideration of Continuous Detonation Engines
,”
AIAA J.
,
58
(
12
), pp.
4976
5035
.10.2514/1.J058157
8.
Rankin
,
B. A.
,
Fotia
,
M. L.
,
Naples
,
A. G.
,
Stevens
,
C. A.
,
Hoke
,
J. L.
,
Kaemming
,
T. A.
,
Theuerkauf
,
S. W.
, and
Schauer
,
F. R.
,
2017
, “
Overview of Performance, Application, and Analysis of Rotating Detonation Engine Technologies
,”
J. Propul. Power
,
33
(
1
), pp.
131
143
.10.2514/1.B36303
9.
Lu
,
F. K.
, and
Braun
,
E. M.
,
2014
, “
Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts
,”
J. Propul. Power
,
30
(
5
), pp.
1125
1142
.10.2514/1.B34802
10.
Kailasanath
,
K.
,
2017
, “
Recent Developments in the Research on Rotating-Detonation-Wave Engines
,”
AIAA
Paper No. 2017-0784.10.2514/6.2017-0784
11.
Kailasanath
,
K.
,
2011
, “
The Rotating Detonation-Wave Engine Concept: A Brief Status Report
,”
AIAA
Paper No. 2011-580.10.2514/6.2011-580
12.
Schwer
,
D.
, and
Kailasanath
,
K.
,
2012
, “
Modeling Exhaust Effects in Rotating Detonation Engines
,”
AIAA
Paper No. 2012-3943.10.2514/6.2012-3943
13.
Tobias
,
J.
,
Miller
,
R.
, and
Agrawal
,
A. K.
,
2020
, “
Flow Measurements Inside a Rotating Detonation Combustor
,”
AIAA
Paper No. 2020-3869.10.2514/6.2020-3869
14.
Raj
,
P.
,
Talukdar
,
S.
,
Langner
,
D.
,
Gupta
,
A.
,
Meadows
,
J.
, and
Agrawal
,
A.
,
2024
, “
Validation of Rotating Detonation Combustor Computational Fluid Dynamics Simulations for Predicting Unsteady Supersonic-Subsonic Flow Field at the Exit
,”
ASME J. Eng. Gas Turbines Power
, 146(4), p.
041012
.10.1115/1.4063706
15.
Zhou
,
S.
,
Ma
,
H.
,
Li
,
S.
,
Liu
,
D.
,
Yan
,
Y.
, and
Zhou
,
C.
,
2017
, “
Effects of a Turbine Guide Vane on Hydrogen-Air Rotating Detonation Wave Propagation Characteristics
,”
Int. J. Hydrogen Energy
,
42
(
31
), pp.
20297
20305
.10.1016/j.ijhydene.2017.06.115
16.
Paxson
,
D. E.
, and
Naples
,
A.
,
2017
, “
Numerical and Analytical Assessment of a Coupled Rotating Detonation Engine and Turbine Experiment
,”
AIAA
Paper No. 2017-1746.10.2514/6.2017-1746
17.
Lynch
,
S. P.
, and
Boggio
,
M.
,
2022
, “
Computational Analysis of Rotating Detonation Engine Exhaust Interacting With a Turbine Vane
,”
AIAA
Paper No. 2022-1720.10.2514/6.2022-1720
18.
Bach
,
E.
,
Stathopoulos
,
P.
,
Paschereit
,
C. O.
, and
Bohon
,
M. D.
,
2020
, “
Performance Analysis of a Rotating Detonation Combustor Based on Stagnation Pressure Measurements
,”
Combust. Flame
,
217
, pp.
21
36
.10.1016/j.combustflame.2020.03.017
19.
Wu
,
Y.
,
Weng
,
C.
,
Zheng
,
Q.
,
Wei
,
W.
, and
Bai
,
Q.
,
2021
, “
Experimental Research on the Performance of a Rotating Detonation Combustor With a Turbine Guide Vane
,”
Energy
,
218
, p.
119580
.10.1016/j.energy.2020.119580
20.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2017
, “
Performance of Axial Turbines Exposed to Large Fluctuations
,”
AIAA
Paper No. 2017-4817.10.2514/6.2017-4817
21.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R.
, and
Schauer
,
F.
,
2019
, “
T63 Turbine Response to Rotating Detonation Combustor Exhaust Flow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021029
.10.1115/1.4041135
22.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2019
, “
Characterization of a Supersonic Turbine Downstream of a Rotating Detonation Combustor
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031501
.10.1115/1.4040815
23.
Raj
,
P.
, and
Meadows
,
J.
,
2023
, “
Numerical Analysis to Optimize and Study the Impact of Area Profiling on the Performance of a Rotating Detonation Engine
,”
ASME
Paper No. GT2023-102982.10.1115/GT2023-102982
24.
Tobias
,
J.
,
Agrawal
,
A. K.
, and
Paxson
,
D. E.
,
2022
, “
Experimental and Computational Analysis of a Rotating Detonation Combustor
,”
AIAA
Paper No. 2022-1879.10.2514/6.2022-1879
25.
Codoni
,
J. R.
,
Cho
,
K. Y.
,
Hoke
,
J. L.
,
Rankin
,
B. A.
, and
Schauer
,
F. R.
,
2018
, “
Simultaneous Mid-IR H2O/CO2 Emission and OH Chemiluminescence Measurements Within a RDE Operating With and Without Backpressure
,”
AIAA
Paper No. 2018-1882.10.2514/6.2018-1882
26.
Ge
,
G.
,
Deng
,
L.
,
Ma
,
H.
,
Liu
,
X.
,
Jin
,
L.
, and
Zhou
,
C.
,
2019
, “
Effect of Blockage Ratio on the Existence of Multiple Waves in Rotating Detonation Engine
,”
Acta Astronaut.
,
164
, pp.
230
240
.10.1016/j.actaastro.2019.08.007
27.
Bennewitz
,
J. W.
,
Bigler
,
B. R.
,
Ross
,
M. C.
,
Danczyk
,
S. A.
,
Hargus
,
W. A.
, Jr.
, and
Smith
,
R. D.
,
2021
, “
Performance of a Rotating Detonation Rocket Engine With Various Convergent Nozzles and Chamber Lengths
,”
Energies
,
14
(
8
), p.
2037
.10.3390/en14082037
28.
Fotia
,
M. L.
,
Schauer
,
F.
,
Kaemming
,
T.
, and
Hoke
,
J.
,
2016
, “
Experimental Study of the Performance of a Rotating Detonation Engine With Nozzle
,”
J. Propul. Power
,
32
(
3
), pp.
674
681
.10.2514/1.B35913
29.
Talukdar
,
S.
,
Langner
,
D.
,
Gupta
,
A.
, and
Agrawal
,
A. K.
,
2023
, “
Flow Characterization of a Rotating Detonation Combustor Integrated With Various Convergent Nozzles
,”
AIAA
Paper No. 2023-1295.10.2514/6.2023-1295
30.
Bell
,
K.
,
Schwer
,
D.
, and
Agrawal
,
A. K.
,
2023
, “
Profiling Cross-Sectional Area of a Radial Rotating Detonation Combustor to Increase Pressure Gain
,”
Aerosp. Sci. Technol.
,
133
, p.
108096
.10.1016/j.ast.2022.108096
31.
Talukdar
,
S.
,
Langner
,
D.
,
Gupta
,
A.
, and
Agrawal
,
A. K.
,
2024
, “
Performance Characteristics of a Rotating Detonation Combustor Exiting Into a Pressurized Plenum to Simulate Gas Turbine Inlet
,”
ASME J. Eng. Gas Turbines Power
,
146
(
4
), p.
041015
.10.1115/1.4063710
32.
Tobias
,
J.
,
Depperschmidt
,
D.
,
Welch
,
C.
,
Miller
,
R.
,
Uddi
,
M.
,
Agrawal
,
A. K.
, and
Daniel
,
R.
, Jr.
,
2019
, “
OH* Chemiluminescence Imaging of the Combustion Products From a Methane-Fueled Rotating Detonation Engine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021021
.10.1115/1.4041143
33.
Tobias
,
J. R.
, and
Agrawal
,
A. K.
,
2023
, “
Flow Development in Radial Plane of Rotating Detonation Engine Integrated With Aerospike
,”
J. Propul. Power
,
39
(
3
), pp.
318
330
.10.2514/1.B38874
34.
Langner
,
D.
,
Gupta
,
A.
,
Miller
,
R.
, and
Agrawal
,
A. K.
,
2022
, “
Design and Implementation of a Disk-Shaped Radial Rotating Detonation Engine With Integrated Aerospike
,”
AIAA
Paper No. 2022-0642.10.2514/6.2022-0642
35.
Boomsma
,
A.
,
Bhattacharya
,
S.
,
Troolin
,
D.
,
Pothos
,
S.
, and
Vlachos
,
P.
,
2016
, “
A Comparative Experimental Evaluation of Uncertainty Estimation Methods for Two-Component PIV
,”
Meas. Sci. Technol.
,
27
(
9
), p.
094006
.10.1088/0957-0233/27/9/094006
36.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
37.
Subramanian
,
S.
, and
Meadows
,
J.
,
2020
, “
Novel Approach for Computational Modeling of a Non-Premixed Rotating Detonation Engine
,”
J. Propul. Power
,
36
(
4
), pp.
617
631
.10.2514/1.B37719
38.
Van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.10.1016/0021-9991(79)90145-1
39.
Petersen
,
E. L.
, and
Hanson
,
R. K.
,
1999
, “
Reduced Kinetics Mechanisms for Ram Accelerator Combustion
,”
J. Propul. Power
,
15
(
4
), pp.
591
600
.10.2514/2.5468
40.
Pudsey
,
A. S.
, and
Boyce
,
R. R.
,
2010
, “
Numerical Investigation of Transverse Jets Through Multiport Injector Arrays in a Supersonic Crossflow
,”
J. Propul. Power
,
26
(
6
), pp.
1225
1236
.10.2514/1.39603
41.
Driscoll
,
R.
,
George
,
A. S.
, and
Gutmark
,
E. J.
,
2015
, “
Numerical Investigation of Injection Within an Axisymmetric Rotating Detonation Engine
,”
Int. J. Hydrogen Energy
, 41, pp.
1
12
.10.1016/j.ijhydene.2015.10.055
42.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
43.
Kaemming
,
T. A.
, and
Paxson
,
D. E.
,
2018
, “
Determining the Pressure Gain of Pressure Gain Combustion
,”
AIAA
Paper No. 2018-4567.10.2514/6.2018-4567
You do not currently have access to this content.