Abstract

Natural gas-diesel dual-fuel (NDDF) combustion can be a viable method to reduce diesel usage in compression ignition (CI) internal combustion engines. Potential benefits of NDDF engines in comparison to conventional diesel engines include decreases in particulate matter (PM) and carbon dioxide (CO2) emissions. This study focuses on the effect of intake pressure on a dual-fuel engine with intake port injected natural gas (NG) and in-cylinder direct injected diesel at two typical engine operation conditions—low load-high speed and high load-low speed. The research work was performed on a heavy-duty, four-stroke CI, single-cylinder research engine at a NG-diesel energy ratio of approximately 3:1. The results show that when the intake pressure was increased, the indicated thermal efficiency (ITE) decreased and increased at the low load-high speed and high load-low speed conditions, respectively, for NDDF combustion. For the low load-high speed NDDF combustion, increasing intake pressure increased the carbon monoxide, methane, and soot emissions, but decreased the nitrogen oxide (NOx) emissions. For the high load-low speed NDDF combustion, increasing intake pressure caused the methane emissions to increase, and the carbon monoxide, NOx, and soot emissions to decrease. In-cylinder temperature measured at the tip of the diesel injector showed that the injector tip temperatures were higher for NDDF cases compared to diesel cases and these temperatures could be correlated with the combustion phasing and the NOx emissions. Increasing intake pressure caused lower injector tip temperatures for both NDDF operating conditions. Equivalent CO2 emissions for the low load-high speed and high load-low speed NDDF cases were higher and lower than the corresponding diesel cases, respectively.

References

1.
Wei
,
L.
, and
Geng
,
P.
,
2016
, “
A Review on Natural Gas/Diesel Dual-Fuel Combustion, Emissions and Performance
,”
Fuel Process. Technol.
,
142
, pp.
264
278
.10.1016/j.fuproc.2015.09.018
2.
Figer
,
G.
,
Seitz
,
H. F.
,
Graf
,
G.
, and
Schreier
,
H.
,
2014
, “
Commercial Vehicle Natural Gas Engines With Diesel Efficiency
,”
MTZ Worldwide
,
75
(
10
), pp.
10
15
.10.1007/s38313-014-0229-2
3.
Sahoo
,
B. B.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2009
, “
Effect of Engine Parameters and Type of Gaseous Fuel on the Performance of Dual-Fuel Gas Diesel Engines – A Critical Review
,”
Renewable Sustainable Energy Rev.
,
13
(
6–7
), pp.
1151
1184
.10.1016/j.rser.2008.08.003
4.
Guo
,
H.
,
Neill
,
W. S.
, and
Liko
,
B.
,
2015
, “
An Experimental Investigation on the Combustion and Emissions Performance of a Natural Gas–Diesel Dual-Fuel Engine at Low and Medium Loads
,”
ASME
Paper No. ICEF2015-1041.10.1115/ICEF2015-1041
5.
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
,
Singh
,
S.
,
Bell
,
S. R.
,
Midkiff
,
K. C.
,
Gong
,
W.
,
Fiveland
,
S. B.
, and
Willi
,
M.
,
2004
, “
Strategies for Reduced NOx Emissions in Pilot-Ignited Natural Gas Engines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
3
), pp.
665
671
.10.1115/1.1760530
6.
Liu
,
J.
,
Yang
,
F.
,
Wang
,
H.
,
Ouyang
,
M.
, and
Hao
,
S.
,
2013
, “
Effects of Pilot Fuel Quantity on the Emissions Characteristics of a CNG/Diesel Dual Fuel Engine With Optimized Pilot Injection Timing
,”
Appl. Energy
,
110
, pp.
201
206
.10.1016/j.apenergy.2013.03.024
7.
Bae
,
C.
, and
Kim
,
J.
,
2017
, “
Alternative Fuels for Internal Combustion Engines
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3389
3413
.10.1016/j.proci.2016.09.009
8.
Osman
,
A. I.
,
Abu-Dahrieh
,
J. K.
,
Laffir
,
F.
,
Curtin
,
T.
,
Thompson
,
J. M.
, and
Rooney
,
D. W.
,
2016
, “
A Bimetallic Catalyst on a Dual Component Support for Low Temperature Total Methane Oxidation
,”
Appl. Catal. B: Environ.
,
187
, pp.
408
418
.10.1016/j.apcatb.2016.01.017
9.
Gärtner
,
U.
,
Rabl
,
H.-P.
, and
Zink
,
U.
,
2018
, “
Exhaust Gas Aftertreatment of the Future
,”
MTZ Worldwide
,
79
(
7–8
), pp.
70
75
.10.1007/s38313-018-0060-2
10.
Maunula
,
T.
,
2013
, “
Intensification of Catalytic Aftertreatments Systems for Mobile Applications
,”
SAE
Paper No. 2013-01-0530.10.4271/2013-01-0530
11.
Zhou
,
L.
,
Liu
,
Y.-F.
,
Wu
,
C.-B.
,
Sun
,
L.
,
Wang
,
L.
,
Zeng
,
K.
, and
Huang
,
Z. H.
,
2013
, “
Effect of the Diesel Injection Timing and the Pilot Quantity on the Combustion Characteristics and the Fine-Particle Emissions in a Micro-Diesel Pilot-Ignited Natural-Gas Engine
,”
Proc. Inst. Mech. Eng., Part D
,
227
(
8
), pp.
1142
1152
.10.1177/0954407013480452
12.
Yousefi
,
A.
,
Guo
,
H.
, and
Birouk
,
M.
,
2019
, “
Effect of Diesel Injection Timing on the Combustion of Natural Gas/Diesel Dual-Fuel Engine at Low-High Load and Low-High Speed Conditions
,”
Fuel
,
235
, pp.
838
846
.10.1016/j.fuel.2018.08.064
13.
Papagiannakis
,
R. G.
, and
Hountalas
,
D. T.
,
2012
, “
Comparative Evaluation of Various Strategies for Improving the Characteristics of Performance of a Pilot Ignited Natural Gas/Diesel Engine
,”
Proc. - Soc. Behav. Sci.
,
48
, pp.
3284
3296
.10.1016/j.sbspro.2012.06.1294
14.
Yang
,
B.
,
Xi
,
C.
,
Wei
,
X.
,
Zeng
,
K.
, and
Lai
,
M.-C.
,
2015
, “
Parametric Investigation of Natural Gas Port Injection and Diesel Pilot Injection on the Combustion and Emissions of a Turbocharged Common Rail Dual-Fuel Engine at Low Load
,”
Appl. Energy
,
143
, pp.
130
137
.10.1016/j.apenergy.2015.01.037
15.
Li
,
Y.
,
Li
,
H.
,
Guo
,
H.
,
Li
,
Y.
, and
Yao
,
M.
,
2017
, “
A Numerical Investigation on Methane Combustion and Emissions From a Natural Gas-Diesel Dual Fuel Engine Using CFD Model
,”
Appl. Energy
,
205
, pp.
153
162
.10.1016/j.apenergy.2017.07.071
16.
Nieman
,
D.
,
Morris
,
A.
,
Neely
,
G.
, and
Matheaus
,
A.
,
2019
, “
Utilizing Multiple Combustion Modes to Increase Efficiency and Achieve Full Load Dual-Fuel Operation in a Heavy-Duty Engine
,”
SAE
Paper No. 2019-01-1157.10.4271/2019-01-1157
17.
Raihan
,
M. S.
,
Guerry
,
E. S.
,
Dwivedi
,
U.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2015
, “
Experimental Analysis of Diesel-Ignited Methane Dual-Fuel Low-Temperature Combustion in a Single-Cylinder Diesel Engine
,”
J. Energy Eng.
,
141
(
2
), p.
C4014007
.10.1061/(ASCE)EY.1943-7897.0000235
18.
Argueyrolles
,
B.
,
Dehoux
,
S.
,
Gastaldi
,
P.
,
Grosjean
,
L.
,
Levy
,
F.
,
Michel
,
A.
, and
Passerel
,
D.
,
2007
, “
Influence of Injector Nozzle Design and Cavitation on Coking Phenomenon
,”
SAE
Paper No. 2007-01-1896.10.4271/2007-01-1896
19.
Guo
,
H.
, and
Liko
,
B.
,
2018
, “
Injector Tip Temperature and Combustion Performance of a Natural Gas-Diesel Dual-Fuel Engine at Medium and High Load Conditions
,”
ASME
Paper No. ICEF2018-9664.10.1115/ICEF2018-9664
20.
Dev
,
S.
,
Guo
,
H.
, and
Liko
,
B.
,
2020
, “
A Study on the High Load Operation of a Natural Gas-Diesel Dual-Fuel Engine
,”
Front. Mech. Eng.
,
6
, p.
545416
.10.3389/fmech.2020.545416
21.
Guo
,
H.
,
Liko
,
B.
, and
Neill
,
W. S.
,
2017
, “
Effect of Diesel Injection Split on Combustion and Emissions Performance of a Natural Gas–Diesel Dual-Fuel Engine at a Low Load Condition
,”
ASME
Paper No. ICEF2017-3584.10.1115/ICEF2017-3584
22.
Guo
,
H.
,
Liko
,
B.
,
Luque
,
L.
, and
Littlejohns
,
J.
,
2018
, “
Combustion Performance and Unburned Hydrocarbon Emissions of a Natural Gas–Diesel Dual-Fuel Engine at a Low Load Condition
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
112801
.10.1115/1.4039758
23.
Yousefi
,
A.
,
Guo
,
H.
, and
Birouk
,
M.
,
2018
, “
An Experimental and Numerical Study on Diesel Injection Split of a Natural Gas/Diesel Dual-Fuel Engine at a Low Engine Load
,”
Fuel
,
212
, pp.
332
346
.10.1016/j.fuel.2017.10.053
24.
Fathi
,
M.
,
Saray
,
R. K.
, and
Checkel
,
M. D.
,
2010
, “
Detailed Approach for Apparent Heat Release Analysis in HCCI Engines
,”
Fuel
,
89
(
9
), pp.
2323
2330
.10.1016/j.fuel.2010.04.030
25.
Woodyard
,
D.
,
2009
,
Pounder's Marine Diesel Engines and Gas Turbines
,
Butterworth-Heinemann
, Oxford, UK.
26.
TransportPolicy.net
,
2024
, “
US Heavy-Duty AVL 8-Mode
,” TransportPolicy, accessed June 27, 2024, https://www.transportpolicy.net/standard/us-heavy-duty-avl-8-mode/
27.
Han
,
S.
,
Kim
,
J.
, and
Bae
,
C.
,
2014
, “
Effect of Air–Fuel Mixing Quality on Characteristics of Conventional and Low Temperature Diesel Combustion
,”
Appl. Energy
,
119
, pp.
454
466
.10.1016/j.apenergy.2013.12.045
28.
Shen
,
M.
,
Tuner
,
M.
,
Johansson
,
B.
, and
Cannella
,
W.
,
2013
, “
Effects of EGR and Intake Pressure on PPC of Conventional Diesel, Gasoline and Ethanol in a Heavy Duty Diesel Engine
,”
SAE
Paper No. 2013-01-2702.10.4271/2013-01-2702
29.
Sarangi
,
A. K.
,
McTaggart-Cowan
,
G. P.
, and
Garner
,
C. P.
,
2010
, “
The Effects of Intake Pressure on High EGR Low Temperature Diesel Engine Combustion
,”
SAE
Paper No. 2010-01-2145.10.4271/2010-01-2145
30.
Colban
,
W. F.
,
Miles
,
P. C.
, and
Oh
,
S.
,
2007
, “
Effect of Intake Pressure on Performance and Emissions in an Automotive Diesel Engine Operating in Low Temperature Combustion Regimes
,”
SAE J. Fuels Lubr.
,
116
(
4
), pp.
957
977
.10.4271/2007-01-4063
31.
Yousefi
,
A.
,
Birouk
,
M.
, and
Guo
,
H.
,
2017
, “
An Experimental and Numerical Study of the Effect of Diesel Injection Timing on Natural Gas/Diesel Dual-Fuel Combustion at Low Load
,”
Fuel
,
203
, pp.
642
657
.10.1016/j.fuel.2017.05.009
32.
Yousefi
,
A.
,
Birouk
,
M.
, and
Guo
,
H.
,
2020
, “
On the Variation of the Effect of Natural Gas Fraction on Dual-Fuel Combustion of Diesel Engine Under Low-to-High Load Conditions
,”
Front. Mech. Eng.
,
6
, p.
555136
.10.3389/fmech.2020.555136
33.
Guo
,
H.
,
Gu
,
Z.
,
Thomson
,
K. A.
,
Smallwood
,
G. J.
, and
Baksh
,
F. F.
,
2013
, “
Soot Formation in a Laminar Ethylene/Air Diffusion Flame at Pressures From 1 to 8 atm
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1795
1802
.10.1016/j.proci.2012.07.006
34.
Charest
,
M. R.
,
Groth
,
C. P.
, and
Gülder
,
Ö. L.
,
2011
, “
Effects of Gravity and Pressure on Laminar Coflow Methane–Air Diffusion Flames at Pressures From 1 to 60 Atmospheres
,”
Combust. Flame
,
158
(
5
), pp.
860
875
.10.1016/j.combustflame.2011.01.019
You do not currently have access to this content.