Abstract

Ignition delay times from undiluted mixtures of natural gas (NG)/H2/Air and NG/NH3/Air were measured using a high-pressure shock tube at the University of Central Florida. The combustion temperatures were experimentally tested between 1000 and 1500 K near a constant pressure of 25 bar. As mentioned, mixtures were kept undiluted to replicate the same chemistry pathways seen in gas turbine combustion chambers. Recorded combustion pressures exceeded 200 bar due to the large energy release, hence why these were performed at the high-pressure shock tube facility. The data are compared to the predictions of the NUIGMech 1.1 mechanism for chemical kinetic model validation and refinement. An exceptional agreement was shown for stoichiometric conditions in all cases but strayed at lean and rich equivalence ratios, especially in the lower temperature regime of H2 addition and all temperature ranges of the baseline NG mixture. Hydrogen addition also decreased ignition delay times by nearly 90%, while NH3 fuel addition made no noticeable difference in ignition time. NG/NH3 exhibited similar chemistry to pure NG under the same conditions, which is shown in a sensitivity analysis. The reaction CH3 + O2 = CH3O + O is identified and suggested as a possible modification target to improve model performance. Increasing the robustness of chemical kinetic models via experimental validation will directly aid in designing next-generation combustion chambers for use in gas turbines, which in turn will greatly lower global emissions and reduce greenhouse effects.

References

1.
Haugen
,
H. A.
,
Eldrup
,
N. H.
,
Fatnes
,
A. M.
, and
Leren
,
E.
,
2017
, “
Commercial Capture and Transport of CO2 From Production of Ammonia
,”
Energy Procedia
,
114
, pp.
6133
6140
.10.1016/j.egypro.2017.03.1750
2.
Tuncer
,
O.
,
Acharya
,
S.
, and
Uhm
,
J.
,
2009
, “
Dynamics, NOx and Flashback Characteristics of Confined Premixed Hydrogen-Enriched Methane Flames
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
496
506
.10.1016/j.ijhydene.2008.09.075
3.
Syred
,
N.
,
Abdulsada
,
M.
,
Griffiths
,
A.
,
O'Doherty
,
T.
, and
Bowen
,
P.
,
2012
, “
The Effect of Hydrogen Containing Fuel Blends Upon Flashback in Swirl Burners
,”
Appl. Energy
,
89
(
1
), pp.
106
110
.10.1016/j.apenergy.2011.01.057
4.
Khateeb
,
A. A.
,
Guiberti
,
T. F.
,
Zhu
,
X.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W. L.
,
2020
, “
Stability Limits and Exhaust NO Performances of Ammonia-Methane-Air Swirl Flames
,”
Exp. Therm. Fluid Sci.
,
114
, p.
110058
.10.1016/j.expthermflusci.2020.110058
5.
Pratt
,
D.
,
1967
, “
Performance of Ammonia-Fired Gas-Turbine Combustors
,”
University of California
,
Berkeley, CA
, Report No. 9.https://apps.dtic.mil/sti/citations/AD0657585
6.
Tian
,
H.
,
Xu
,
R.
,
Canadell
,
J. G.
,
Thompson
,
R. L.
,
Winiwarter
,
W.
,
Suntharalingam
,
P.
,
Davidson
,
E. A.
, et al.,
2020
, “
A Comprehensive Quantification of Global Nitrous Oxide Sources and Sinks
,”
Nature
,
586
(
7828
), pp.
248
256
.10.1038/s41586-020-2780-0
7.
Alves
,
L.
,
Holz
,
L. I.
,
Fernandes
,
C.
,
Ribeirinha
,
P.
,
Mendes
,
D.
,
Fagg
,
D. P.
, and
Mendes
,
A.
,
2022
, “
A Comprehensive Review of NOx and N2O Mitigation From Industrial Streams
,”
Renewable Sustainable Energy Rev.
,
155
, p.
111916
.10.1016/j.rser.2021.111916
8.
Jain
,
A.
,
Agarwal
,
S.
, and
Ichikawa
,
T.
,
2021
, “
Ammonia: A Promising Candidate for Hydrogen Economy
,”
Hydrogen Storage for Sustainability
, Walter de Gruyter GmbH & Co KG, Berlin, Germany, p.
225
.
9.
Aziz
,
M.
,
Wijayanta
,
A. T.
, and
Nandiyanto
,
A. B. D.
,
2020
, “
Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization
,”
Energies
,
13
(
12
), p.
3062
.10.3390/en13123062
10.
Zamfirescu
,
C.
, and
Dincer
,
I.
,
2008
, “
Using Ammonia as a Sustainable Fuel
,”
J. Power Sources
,
185
(
1
), pp.
459
465
.10.1016/j.jpowsour.2008.02.097
11.
Ramos
,
C. F.
,
Rocha
,
R. C.
,
Oliveira
,
P. M.
,
Costa
,
M.
, and
Bai
,
X.-S.
,
2019
, “
Experimental and Kinetic Modelling Investigation on NO, CO, and NH3 Emissions From NH3/CH4/Air Premixed Flames
,”
Fuel
,
254
, p.
115693
.10.1016/j.fuel.2019.115693
12.
Donohoe
,
N.
,
Heufer
,
A.
,
Metcalfe
,
W. K.
,
Curran
,
H. J.
,
Davis
,
M. L.
,
Mathieu
,
O.
,
Plichta
,
D.
,
Morones
,
A.
,
Petersen
,
E. L.
, and
Güthe
,
F.
,
2014
, “
Ignition Delay Times, Laminar Flame Speeds, and Mechanism Validation for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
Combust. Flame
,
161
(
6
), pp.
1432
1443
.10.1016/j.combustflame.2013.12.005
13.
Chai
,
W. S.
,
Bao
,
Y.
,
Jin
,
P.
,
Tang
,
G.
, and
Zhou
,
L.
,
2021
, “
A Review on Ammonia, Ammonia-Hydrogen and Ammonia-Methane Fuels
,”
Renewable Sustainable Energy Rev.
,
147
, p.
111254
.10.1016/j.rser.2021.111254
14.
Gersen
,
S.
,
Anikin
,
N.
,
Mokhov
,
A.
, and
Levinsky
,
H.
,
2008
, “
Ignition Properties of Methane/Hydrogen Mixtures in a Rapid Compression Machine
,”
Int. J. Hydrogen Energy
,
33
(
7
), pp.
1957
1964
.10.1016/j.ijhydene.2008.01.017
15.
Herzler
,
J.
, and
Naumann
,
C.
,
2009
, “
Shock-Tube Study of the Ignition of Methane/Ethane/Hydrogen Mixtures With Hydrogen Contents From 0% to 100% at Different Pressures
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
213
220
.10.1016/j.proci.2008.07.034
16.
Huang
,
J.
,
Bushe
,
W.
,
Hill
,
P.
, and
Munshi
,
S.
,
2006
, “
Experimental and Kinetic Study of Shock Initiated Ignition in Homogeneous Methane–Hydrogen–Air Mixtures at Engine‐Relevant Conditions
,”
Int. J. Chem. Kinet.
,
38
(
4
), pp.
221
233
.10.1002/kin.20157
17.
De Vries
,
J.
, and
Petersen
,
E.
,
2007
, “
Autoignition of Methane-Based Fuel Blends Under Gas Turbine Conditions
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3163
3171
.10.1016/j.proci.2006.07.206
18.
Laich
,
A. R.
,
Baker
,
J.
,
Ninnemann
,
E.
,
Sigler
,
C.
,
Naumann
,
C.
,
Braun-Unkhoff
,
M.
, and
Vasu
,
S. S.
,
2020
, “
Ignition Behavior of Oxy-Methane With High Fuel Loading and CO2 Dilution in a Shock Tube
,”
ASME
Paper No. GT2020-14338.10.1115/GT2020-14338
19.
Shu
,
B.
,
He
,
X.
,
Ramos
,
C.
,
Fernandes
,
R.
, and
Costa
,
M.
,
2021
, “
Experimental and Modeling Study on the Auto-Ignition Properties of Ammonia/Methane Mixtures at Elevated Pressures
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
261
268
.10.1016/j.proci.2020.06.291
20.
Baker
,
J.
,
Rahman
,
R. K.
,
Pierro
,
M.
,
Higgs
,
J.
,
Urso
,
J.
,
Kinney
,
C.
, and
Vasu
,
S.
,
2022
, “
Experimental Ignition Delay Time Measurements and Chemical Kinetics Modeling of Hydrogen/Ammonia/Natural Gas Fuels
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041002
.10.1115/1.4055721
21.
Li
,
R.
,
Konnov
,
A. A.
,
He
,
G.
,
Qin
,
F.
, and
Zhang
,
D.
,
2019
, “
Chemical Mechanism Development and Reduction for Combustion of NH3/H2/CH4 Mixtures
,”
Fuel
,
257
, p.
116059
.10.1016/j.fuel.2019.116059
22.
Urso
,
J. J.
,
Kinney
,
C.
,
Terracciano
,
A. C.
,
Barak
,
S.
,
Laich
,
A.
,
Albright
,
M. A.
,
Pierro
,
M.
,
McGaunn
,
J.
, and
Vasu
,
S. S.
,
2022
, “
Characterization of a New Ultra-High Pressure Shock Tube Facility for Combustion and Propulsion Studies
,”
Rev. Sci. Instrum.
,
93
(
6
), p.
063905
.10.1063/5.0084047
23.
Kinney
,
C.
,
2022
, “
PyRGFROSH: A Frozen Shock Solver for Ideal and Real Gas Equations of State
,”.
24.
Bourque
,
G.
,
Healy
,
D.
,
Curran
,
H.
,
Simmie
,
J.
,
de Vries
,
J.
,
Antonovski
,
V.
,
Corbin
,
B.
,
Zinner
,
C.
, and
Petersen
,
E.
,
2007
, “
Effect of Higher-Order Hydrocarbons on Methane-Based Fuel Chemistry at Gas Turbine Pressures
,”
ASME
Paper No. GT2007-28039. 10.1115/GT2007-28039
25.
Pierro
,
M.
,
Laich
,
A.
,
Urso
,
J. J.
,
Kinney
,
C.
,
Vasu
,
S.
, and
Albright
,
M. A.
,
2022
, “
Ignition Delay Times of Methane Fuels at Thrust Chamber Conditions in an Ultra-High-Pressure Shock Tube
,”
AIAA
Paper No. 2022-1254.10.2514/6.2022-1254
26.
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2015
, “
Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry
,”
Combust. Flame
,
162
(
3
), pp.
554
570
.10.1016/j.combustflame.2014.08.022
27.
Pochet
,
M.
,
Dias
,
V.
,
Moreau
,
B.
,
Foucher
,
F.
,
Jeanmart
,
H.
, and
Contino
,
F.
,
2019
, “
Experimental and Numerical Study, Under LTC Conditions, of Ammonia Ignition Delay With and Without Hydrogen Addition
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
621
629
.10.1016/j.proci.2018.05.138
28.
Petersen
,
E.
, and
Hanson
,
R.
,
2006
, “
Measurement of Reflected-Shock Bifurcation Over a Wide Range of Gas Composition and Pressure
,”
Shock Waves
,
15
(
5
), pp.
333
340
.10.1007/s00193-006-0032-3
29.
Petersen
,
E. L.
,
2009
, “
Interpreting Endwall and Sidewall Measurements in Shock-Tube Ignition Studies
,”
Combust. Sci. Technol.
,
181
(
9
), pp.
1123
1144
.10.1080/00102200902973323
30.
Shu
,
B.
,
Vallabhuni
,
S.
,
He
,
X.
,
Issayev
,
G.
,
Moshammer
,
K.
,
Farooq
,
A.
, and
Fernandes
,
R.
,
2019
, “
A Shock Tube and Modeling Study on the Autoignition Properties of Ammonia at Intermediate Temperatures
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
205
211
.10.1016/j.proci.2018.07.074
31.
Wu
,
Y.
,
Panigrahy
,
S.
,
Sahu
,
A. B.
,
Bariki
,
C.
,
Beeckmann
,
J.
,
Liang
,
J.
,
Mohamed
,
A. A.
,
Dong
,
S.
,
Tang
,
C.
,
Pitsch
,
H.
,
Huang
,
Z.
, and
Curran
,
H. J.
,
2021
, “
Understanding the Antagonistic Effect of Methanol as a Component in Surrogate Fuel Models: A Case Study of Methanol/n-Heptane Mixtures
,”
Combust. Flame
,
226
, pp.
229
242
.10.1016/j.combustflame.2020.12.006
32.
Glarborg
,
P.
,
Miller
,
J. A.
,
Ruscic
,
B.
, and
Klippenstein
,
S. J.
,
2018
, “
Modeling Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
67
, pp.
31
68
.10.1016/j.pecs.2018.01.002
33.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
,
Weber
,
B. W.
,
2022
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
.”10.5281/zenodo.8137090
34.
ANSYS
,
2022
, “
ANSYS Chemkin
, Release 22.0 R2,”
ANSYS
,
Canonsburg, PA
.
35.
Neupane
,
S.
,
Barnes
,
F.
,
Barak
,
S.
,
Ninnemann
,
E.
,
Loparo
,
Z.
,
Masunov
,
A. E.
, and
Vasu
,
S. S.
,
2018
, “
Shock Tube/Laser Absorption and Kinetic Modeling Study of Triethyl Phosphate Combustion
,”
J. Phys. Chem. A
,
122
(
15
), pp.
3829
3836
.10.1021/acs.jpca.8b00800
36.
Mark
,
H.
,
1958
, “
The Interaction of a Reflected Shock Wave With the Boundary Layer in a Shock Tube
,” NACA Technical Memorandum Cornell University, Ithaca, NY,
Report No
.
NACA-TM-1418
.https://ntrs.nasa.gov/citations/20050019632
37.
Hollyer
,
R. N.
, Jr.
,
1954
, “
A Study of Attenuation in the Shock Tube
,”
Ph.D. thesis
, University of Michigan ProQuest Dissertations Publishing, Ann Arbor, MI.https://www.proquest.com/openview/2e43d05208d59a1118a5d1362a44bc26/1?pq-origsite=gscholar&cbl=18750&diss=y
38.
Yamashita
,
H.
,
Kasahara
,
J.
,
Sugiyama
,
Y.
, and
Matsuo
,
A.
,
2012
, “
Visualization Study of Ignition Modes Behind Bifurcated-Reflected Shock Waves
,”
Combust. Flame
,
159
(
9
), pp.
2954
2966
.10.1016/j.combustflame.2012.05.009
39.
Hanson
,
R. K.
,
Pang
,
G. A.
,
Chakraborty
,
S.
,
Ren
,
W.
,
Wang
,
S.
, and
Davidson
,
D. F.
,
2013
, “
Constrained Reaction Volume Approach for Studying Chemical Kinetics Behind Reflected Shock Waves
,”
Combust. Flame
,
160
(
9
), pp.
1550
1558
.10.1016/j.combustflame.2013.03.026
40.
Pierro
,
M.
,
Urso
,
J.
,
Kinney
,
C.
,
Kesharwani
,
S.
,
McGaunn
,
J.
,
Dennis
,
C.
, and
Vasu
,
S. S.
,
2022
, “
High-Fuel Loading Ignition Delay Time Characterization of Hydrogen/Natural Gas/Ammonia at Gas Turbine-Relevant Conditions Inside a High-Pressure Shock Tube
,”
ASME
Paper No. GT2022-82069.10.1115/GT2022-82069
41.
Zhang
,
C.
,
Li
,
B.
,
Rao
,
F.
,
Li
,
P.
, and
Li
,
X.
,
2015
, “
A Shock Tube Study of the Autoignition Characteristics of RP-3 Jet Fuel
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3151
3158
.10.1016/j.proci.2014.05.017
42.
Kaczmarek
,
D.
,
Shaqiri
,
S.
,
Atakan
,
B.
, and
Kasper
,
T.
,
2021
, “
The Influence of Pressure and Equivalence Ratio on the NTC Behavior of Methane
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
233
241
.10.1016/j.proci.2020.06.112
43.
Srinivasan
,
N.
,
Su
,
M.-C.
,
Sutherland
,
J.
, and
Michael
,
J.
,
2005
, “
Reflected Shock Tube Studies of High-Temperature Rate Constants for CH3 + O2, H2CO + O2, and OH + O2
,”
J. Phys. Chem. A
,
109
(
35
), pp.
7902
7914
.10.1021/jp0581330
44.
Blitz
,
M. A.
,
Green
,
N. J.
,
Shannon
,
R. J.
,
Pilling
,
M. J.
,
Seakins
,
P. W.
,
Western
,
C. M.
, and
Robertson
,
S. H.
,
2015
, “
Reanalysis of Rate Data for the Reaction CH3 + CH3 → C2H6 Using Revised Cross Sections and a Linearized Second-Order Master Equation
,”
J. Phys. Chem. A
,
119
(
28
), pp.
7668
7682
.10.1021/acs.jpca.5b01002
You do not currently have access to this content.