Abstract

Heat pumps are expected to play a primary role in electrification of thermal users in the residential and industrial sectors. Dynamic compressors are widely used in large size heat pumps, thanks to their industrial replicability, compact size, affordable costs, and good performance in terms of efficiency and low acoustic emissions. The instability, which may occur in a compressor installed in closed-loop cycle such as in a heat pump, is quite different from the classic open loop configuration involving dynamic compressors. This is mainly due to the complexity of the compressor instability mechanism coupled to a vapor compression system connected with two-phase heat exchangers, having different thermal and fluid dynamic capacitance properties, under a physical feedback loop. The aim of this paper is to investigate the behavior of a dynamic compressor installed in an innovative heat pump prototype, of laboratory scale, under stable and unstable conditions. A preliminary simple dynamic model of the compression system consisting of a radial compressor, condenser, and evaporator is developed to represent the heat pump compression system, aiming at its time-dependent representation during compressor instable behavior. The evaporator and condenser are modeled using empirical correlations representing the heat exchange and phase change phenomena and including the thermal capacitances due to refrigerant mass and heat exchanger pipes. The preliminary validation of the dynamic model results is done through a dedicated experimental campaign, under different operating conditions. Results show the complexity of the interaction between the centrifugal compressor and the heat pump loop, discerning the different contributions to the time-dependent response of the system. Future steps will encompass a more detailed modeling of the heat pump loop and the use of updated field measurements, including liquid-level meters in the heat exchangers.

References

1.
Baggio
,
P.
,
Bee
,
E.
, and
Prada
,
A.
,
2018
, “
Demand-Side Management of Air-Source Heat Pump and Photovoltaic Systems for Heating Applications in the Italian Context
,”
Environments
,
5
(
12
), p.
132
.10.3390/environments5120132
2.
Rinaldi
,
A.
,
Soini
,
M. C.
,
Streicher
,
K.
,
Patel
,
M. K.
, and
Parra
,
D.
,
2021
, “
Decarbonising Heat With Optimal PV and Storage Investments: A Detailed Sector Coupling Modelling Framework With Flexible Heat Pump Operation
,”
Appl. Energy
,
282
, p.
116110
.10.1016/j.apenergy.2020.116110
3.
Song
,
J.
,
Park
,
J. C.
,
Kim
,
K. Y.
,
Jeong
,
J.
, and
Song
,
S. J.
,
2014
, “
Surge Onset in Turbo Heat Pumps
,”
ASME J. Turbomach.
,
136
(
8
), p.
081001
.10.1115/1.4026145
4.
Marelli
,
S.
,
Misley
,
A.
, and
Ferrando
,
M.
,
2020
, “
Experimental Investigation in Turbocharger Compressors During Surge Operation
,”
ASME
Paper No. GT2020-15174.10.1115/GT2020-15174
5.
Kim
,
H. R.
, and
Song
,
S. J.
,
2010
, “
Modeling of Surge Characteristics in Turbo Heat Pumps
,”
ASME
Paper No. GT2010-23342.10.1115/GT2010-23342
6.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part 1—Development of Equations
,”
ASME J. Eng. Gas Turbine Power
,
108
(
1
), pp.
68
76
.10.1115/1.3239887
7.
Greitzer
,
E. M.
, and
Moore
,
F. K.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part II—Application
,”
ASME J. Eng. Gas Turbine Power
,
108
(
2
), pp.
231
239
.10.1115/1.3239893
8.
Botha
,
B. W.
,
Du Toit
,
B.
, and
Rousseau
,
P. G.
,
2003
, “
Development of a Mathematical Compressor Model to Predict Surge in a Closed Loop Brayton Cycle
,”
ASME
Paper No. GT2003-38795.10.1115/GT2003-38795
9.
Ferrando
,
M.
,
Reboli
,
T.
,
Purushothaman
,
S.
,
Traverso
,
A.
, and
Halbe
,
C.
,
2023
, “
A New Experimental Test Rig for Performance Analysis of Radial Compressors Inside Innovative Heat Pumps
,”
J. Phys.: Conf. Ser.
,
2511
(
1
), p.
012003
.10.1088/1742-6596/2511/1/012003
10.
Ferrando
,
M.
,
Reboli
,
T.
,
Reggio
,
F.
,
Niccolini Marmont Du Haut Champ
,
C. A.
,
Silvestri
,
P.
,
Traverso
,
A.
, and
Sishtla
,
V.
,
2023
, “
Centrifugal Compressor Surge In Innovative Heat Pump - Part 1: Fluid Dynamic And Vibrational Analysis
,”
ASME J. Eng. Gas Turbine Power
, pp.
1
14
.10.1115/1.4063547
11.
Traverso
,
A.
,
2005
, “
TRANSEO Code for the Dynamic Performance Simulation of Micro Gas Turbine Cycles
,”
ASME
Paper No. GT2005-68101.10.1115/GT2005-68101
12.
Traverso
,
A.
,
Massardo
,
A. F.
, and
Scarpellini
,
R.
,
2006
, “
Externally Fired Micro-Gas Turbine: Modelling and Experimental Performance
,”
Appl. Therm. Eng.
,
26
(
16
), pp.
1935
1941
.10.1016/j.applthermaleng.2006.01.013
13.
Mantelli
,
L.
,
Ferrari
,
M. L.
, and
Traverso
,
A.
,
2021
, “
Dynamics and Control of a Turbocharged Solid Oxide Fuel Cell System
,”
Appl. Therm. Eng.
,
191
, p.
116862
.10.1016/j.applthermaleng.2021.116862
14.
Lambruschini
,
F.
,
Liese
,
E.
,
Zitney
,
S. E.
, and
Traverso
,
A.
,
2016
, “
Dynamic Model of a 10 MW Supercritical CO2 Recompression Brayton Cycle
,”
ASME
Paper No. GT2016-56459.10.1115/GT2016-56459
15.
Huber
,
M. L.
,
Lemmon
,
E. W.
,
Bell
,
I. H.
, and
McLinden
,
M. O.
,
2022
, “
The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids
,”
Ind. Eng. Chem. Res.
,
61
(
42
), pp.
15449
15472
.10.1021/acs.iecr.2c01427
16.
Mondejár
,
M. E.
,
McLinden
,
M. O.
, and
Lemmon
,
E. W.
,
2015
, “
Thermodynamic Properties of Trans-1-Chloro-3,3,3-Trifluoropropene (R1233zd(E)): Vapor Pressure, (p, ρ, T) Behavior, and Speed of Sound Measurements, and Equation of State
,”
J. Chem. Eng. Data
,
60
(
8
), pp.
2477
2489
.10.1021/acs.jced.5b00348
17.
Niccolini
,
C. A.
,
Silvestri
,
P.
,
Reggio
,
F.
,
Traverso
,
A.
, and
Sishtla
,
V.
,
2024
, “
Compressor Surge Identification in Innovative Heat-Pump Systems Equipped by Vaned Diffuser Centrifugal Compressor
,”
ASME J. Eng. Gas. Turbines Power
, pp.
1
23
.10.1115/1.4066363
18.
Niccolini Marmont Du Haut Champ
,
C. A.
,
Silvestri
,
P.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2020
, “
Signal Processing Techniques to Detect Centrifugal Compressors Instabilities in Large Volume Power Plants
,”
ASME J. Eng. Gas Turbine Power
,
142
(
12
), p.
121002
.10.1115/1.4048910
You do not currently have access to this content.