Abstract

In this work, a real gas-based vaneless diffuser (VLD) differential equation model is presented. The model requires the specification of the skin friction coefficient as input. However, the use of standard VLD friction coefficient estimation expressions require a reexamination for supercritical CO2 (sCO2) flows. To establish the skin friction coefficient for real gas sCO2 flows, computational fluid dynamics (CFD) data are generated using Latin hypercube sampling (LHS), with boundary conditions spanning the typical operating conditions of sCO2 centrifugal compressors in the kW to MW scale of power generation. The CFD computations are carried out using ansys® cfx. The corresponding VLD friction coefficient for which the VLD stagnation pressure loss predicted by the one-dimensional (1D) differential equation model matches with the three-dimensional (3D) CFD result is back calculated for the LHS designs. This is carried out using a root finding function in MATLAB® software. The existing empirical relation that characterizes the VLD skin friction coefficient using the inlet Reynolds number alone shows a poor correlation (R2 = 0.26), when compared to the CFD data. It is evident that a data driven approach is required to model the sCO2 VLD real gas flow for accurate results. Using the LHS data, the efficacy of an artificial neural network (ANN)-based model is demonstrated. A two hidden layer ANN is developed, which accurately predicts the skin friction coefficient for sCO2 real gas flows (R2 = 0.87). This proposed ANN-based VLD model can be easily integrated into existing 1D codes for real gas sCO2 centrifugal compressor rating and sizing.

References

1.
White
,
M. T.
,
Bianchi
,
G.
,
Chai
,
L.
,
Tassou
,
S. A.
, and
Sayma
,
A. I.
,
2021
, “
Review of Supercritical CO2 Technologies and Systems for Power Generation
,”
Appl. Therm. Eng.
,
185
, p.
116447
.10.1016/j.applthermaleng.2020.116447
2.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Rochau
,
G. E.
, and
Pickard
,
P. S.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,”
Sandia National Labs
,
Albuquerque, NM, and Livermore, CA
, Report No.
SAND2010-0171
.https://digital.library.unt.edu/ark:/67531/metadc1014473/m2/1/high_res_d/984129.pdf
3.
Cha
,
J. E.
,
Bae
,
S. W.
,
Lee
,
J.
,
Cho
,
S. K.
,
Lee
,
J. I.
, and
Park
,
J. H.
,
2016
, “
Operation Results of a Closed Supercritical CO2 Simple Brayton Cycle
,”
The 5th International Supercritical CO2 Power Cycles Symposium
, San Antonio, TX, Mar. 28–31, pp.
1
10
.https://sco2symposium.com/papers2016/Testing/085paper.pdf
4.
Hacks
,
A.
,
Schuster
,
S.
,
Dohmen
,
H. J.
,
Benra
,
F. K.
, and
Brillert
,
D.
,
2018
, “
Turbomachine Design for Supercritical Carbon Dioxide Within the sCO2-HeRo.eu Project
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121017
.10.1115/1.4040861
5.
Ameli
,
A.
,
Afzalifar
,
A.
,
Turunen-Saaresti
,
T.
, and
Backman
,
J.
,
2019
, “
Centrifugal Compressor Design for Near-Critical Point Applications
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031016
.10.1115/1.4040691
6.
Oh
,
H. W.
,
Yoon
,
E. S.
, and
Chung
,
M. K.
,
1997
, “
An Optimum Set of Loss Models for Performance Prediction of Centrifugal Compressors
,”
Proc. Inst. Mech. Eng., Part A
,
211
(
4
), pp.
331
338
.10.1243/0957650971537231
7.
Ren
,
H.
,
Hacks
,
A.
,
Schuster
,
S.
, and
Brillert
,
D.
,
2021
, “
Mean-Line Analysis for Supercritical CO2 Centrifugal Compressors by Using Enthalpy Loss Coefficients
,”
4th European Supercritical CO2 Conference
, Online Conference, Mar. 23–24, pp.
1
10
.https://duepublico2.uni-due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00073771/106_Ren_et_al_Mean-line_analysis_sCO2.pdf
8.
Cho
,
S. K.
,
Son
,
S.
,
Lee
,
J.
,
Lee
,
S. W.
,
Jeong
,
Y.
,
Oh
,
B. S.
, and
Lee
,
J. I.
,
2021
, “
Optimum Loss Models for Performance Prediction of Supercritical CO2 Centrifugal Compressor
,”
Appl. Therm. Eng.
,
184
, p.
116255
.10.1016/j.applthermaleng.2020.116255
9.
Behafarid
,
F.
, and
Podowski
,
M. Z.
,
2016
, “
Modeling and Computer Simulation of Centrifugal CO2 Compressors at Supercritical Pressures
,”
ASME J. Fluids Eng.
,
138
(
6
), p.
061106
.10.1115/1.4032570
10.
Hacks
,
A. J.
,
Abd El Hussein
,
I.
,
Ren
,
H.
,
Schuster
,
S.
, and
Brillert
,
D.
,
2021
, “
Experimental Data of Supercritical Carbon Dioxide (sCO2) Compressor At Various Fluid States
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041012
.10.1115/1.4052954
11.
ANSYS
, 2024, “
ANSYS® Academic Research, Release 2021 R1
,” Ansys, Canonsburg, PA, accessed Oct. 8, 2024, https://www.ansys.com/en-in
12.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2018
,” National Institute of Standards and Technology, Gaithersburg, MD, accessed Oct. 8, 2024, https://www.nist.gov/srd/refprop
13.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple‐Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
14.
ANSYS
, 2024, “
ANSYS® Academic Research, Release 24.1, CFX Reference Guide
,”
ANSYS Inc
, Canonsburg, PA, accessed Oct. 8, 2024, https://www.ansys.com/en-in
15.
Frutschi
,
H. U.
,
2005
,
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
,
ASME Press
, New York.
16.
Seshadri
,
L.
, and
Kumar
,
P.
,
2024
, “
Sliding Pressure Inventory Control of a Supercritical CO2 Cycle for Concentrated Solar Power-Analysis and Implications
,”
ASME J. Sol. Energy Eng., Trans.
,
146
(
1
), p.
011009
.10.1115/1.4063183
17.
Johnston
,
J. F.
, and
Dean
,
R. C.
,
1966
, “
Losses in Vaneless Diffusers of Centrifugal Compressors and Pumps: Analysis, Experiment, and Design
,”
ASME J. Eng. Gas Turbines Power
,
88
(
1
), pp.
49
60
.10.1115/1.3678477
18.
Stanitz
,
J. D.
,
1952
, “
One-Dimensional Compressible Flow in Vaneless Diffusers of Radial or Mixed-Flow Centrifugal Compressors, Including Effects of Friction, Heat Transfer and Area Change
,” NASA Technical Note 2610, Washington, DC, accessed Oct. 8, 2024, https://ntrs.nasa.gov/api/citations/19930083365/downloads/19930083365.pdf
19.
Dubitsky
,
O.
, and
Japikse
,
D.
,
2008
, “
Vaneless Diffuser Advanced Model
,”
ASME J. Turbomach.
,
130
(
1
), p.
011020
.10.1115/1.2372781
20.
Meroni
,
A.
,
Zühlsdorf
,
B.
,
Elmegaard
,
B.
, and
Haglind
,
F.
,
2018
, “
Design of Centrifugal Compressors for Heat Pump Systems
,”
Appl. Energy
,
232
, pp.
139
156
.10.1016/j.apenergy.2018.09.210
21.
Mathworks Inc
, 2024, “
MATLAB R2019b
,”
Mathworks Inc
, Natick, MA, accessed Oct. 8, 2024, https://in.mathworks.com/products/matlab.html
22.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
23.
Agromayor
,
R.
,
Müller
,
B.
, and
Nord
,
L. O.
,
2019
, “
One-Dimensional Annular Diffuser Model for Preliminary Turbomachinery Design
,”
Int. J. Turbomach., Propul. Power
,
4
(
3
), pp.
31
408
.10.3390/ijtpp4030031
24.
Seshadri
,
L.
, and
Kumar
,
P.
,
2021
, “
Vaneless Diffuser Performance in a Super-Critical Carbon Dioxide Centrifugal Compressor With Real Gas Effects
,”
ASME
Paper No. GTINDIA2021-76030.10.1115/GTINDIA2021-76030
25.
Laesecke
,
A.
, and
Muzny
,
C. D.
,
2017
, “
Reference Correlation for the Viscosity of Carbon Dioxide
,”
J. Phys. Chem. Ref. Data
,
46
(
1
), p.
013107
.10.1063/1.4977429
26.
Seshadri
,
L.
,
Kumar
,
P.
,
Nassar
,
A.
, and
Giri
,
G.
,
2022
, “
Analysis of Turbomachinery Losses in sCO2 Brayton Power Blocks
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
112101
.10.1115/1.4054133
You do not currently have access to this content.