Abstract

Motivated by fuel atomization applications in gas turbine combustors, this paper presents an experimental examination of liquid jet trajectory and spray dynamics in crossflow of swirling air, at elevated pressure conditions. The study was conducted within an annular passage and was focused on momentum flux ratio and swirl number as the main parameters. The momentum flux ratio was varied from 2 to 25 through incremental adjustments to the liquid injection velocity and the swirl number values of 0.42 and 0.74 were used, representing typical gas turbine fuel atomization conditions. The jet trajectories were captured by imaging the three-dimensional (3D) helical path traced by the liquid jet using two mutually perpendicular optical windows. Radial penetration was quantified by solving the equations of a helix. The key findings revealed that radial penetration of the liquid jet is larger for higher momentum flux ratios and is influenced by the helical arc length. Notably, the radial penetration observed at low momentum flux ratios was larger for crossflow with lower swirl number and the radial penetration observed at high momentum flux ratios was more for crossflows with higher swirl number. In comparison to the spray characteristics in swirling crossflows at atmospheric pressure, condition of elevated gaseous pressure resulted in lower radial penetration, jet spread and jet area. The jet trajectory correlations for elevated pressure conditions are additionally presented, developed using curve fitting to the experimental data, which will be useful to the industry for estimation of spray trajectory in swirling crossflows at elevated pressure conditions.

References

1.
Sallam
,
K. A.
,
Aalburg
,
C.
, and
Faeth
,
G. M.
,
2004
, “
Breakup of Round Nonturbulent Liquid Jets in Gaseous Crossflow
,”
AIAA J.
,
42
(
12
), pp.
2529
2540
.10.2514/1.3749
2.
Khosla
,
S.
, and
Crocker
,
D. S.
,
2004
, “
CFD Modeling of the Atomization of Plain Liquid Jets in Cross Flow for Gas Turbine Applications
,”
ASME
Paper No. GT2004-54269.10.1115/GT2004-54269
3.
Wang
,
L.
,
Zhang
,
L.
,
Lin
,
W.
,
Wu
,
Y.
, and
Wu
,
X.
,
2022
, “
Spray Trajectory and 3D Droplets Distribution of Liquid Jet in Crossflow With Digital Inline Holography
,”
Exp. Therm. Fluid Sci.
,
139
, p.
110725
.10.1016/j.expthermflusci.2022.110725
4.
Wu
,
P.
,
Kirkendall
,
Fuller
,
K. A.
,
Force
,
U. S. A.
,
Patterson
,
W.
, and
Force
,
A.
,
1998
, “
Spray Structures of Liquid Jets Atomized in Subsonic Crossflows
,”
J. Propul. Power
,
14
(
2
), pp.
173
182
.10.2514/2.5283
5.
Orth
,
R. C.
,
Schetz
,
J. A.
, and
Billig
,
F. S.
,
1969
, “
The Interaction and Penetration of Gaseous Jets in Supersonic Flow
,” Johns Hopkins University, Silver Spring, MD, Report No.
NASA-CR-1386
.https://ntrs.nasa.gov/api/citations/19690023102/downloads/19690023102.pdf
6.
Yates
,
C. L.
,
1972
, “
Liquid Injection Into a Supersonic Stream
,” U.S. Air Force Aero Propulsion Lab, Wright-Patterson AFB, OH, Report No.
AFAPL-TR-71-97
.https://apps.dtic.mil/sti/tr/pdf/AD0741887.pdf
7.
Huang
,
J.
,
Zhao
,
X.
, and
Jiang
,
H.
,
2021
, “
Numerical Simulation of the Atomization of Liquid Transverse Jet in Supersonic Airflow
,”
Phys. Fluids
,
33
(
5
), p.
052114
.10.1063/5.0050520
8.
Li
,
C.
,
Li
,
C.
,
Xiao
,
F.
,
Li
,
Q.
, and
Zhu
,
Y.
,
2019
, “
Experimental Study of Spray Characteristics of Liquid Jets in Supersonic Crossflow
,”
Aerosp. Sci. Technol.
,
95
, p.
105426
.10.1016/j.ast.2019.105426
9.
Sherman
,
A.
, and
Schetz
,
J.
,
1971
, “
Breakup of Liquid Sheets and Jets in a Supersonic Gas Stream
,”
AIAA J.
,
9
(
4
), pp.
666
673
.10.2514/3.6246
10.
Hwang
,
B.-J.
,
Choi
,
H.
, and
Min
,
S.
,
2023
, “
An Experimental Study on Penetration and Mixing Characteristics of Liquid Fuel in Preheated Supersonic Airflows
,”
Acta Astronaut.
,
202
, pp.
511
521
.10.1016/j.actaastro.2022.10.053
11.
Tambe
,
S. B.
,
Jeng
,
S.
,
Mongia
,
H.
, and
Hsiao
,
G.
,
2005
, “
Liquid Jets in Subsonic Crossflow
,”
AIAA
Paper No. 2005-731.10.2514/6.2005-731
12.
Chen
,
T.
,
Smith
,
T.
,
Schommer
,
D.
, and
Nejad
,
A.
,
1993
, “
Multi-Zone Behavior of Transverse Liquid Jet in High-Speed Flow
,”
AIAA
Paper No. 93-0453.10.2514/6.93-0453
13.
Birouk
,
M.
,
Azzopardi
,
B. J.
, and
Stäbler
,
T.
,
2003
, “
Primary Break-Up of a Viscous Liquid Jet in a Cross Airflow
,”
Part. Part. Syst. Charact.
,
20
(
4
), pp.
283
289
.10.1002/ppsc.200390034
14.
Birouk
,
M.
,
Iyogun
,
C. O.
, and
Popplewell
,
N.
,
2007
, “
Role of Viscosity on Trajectory of Liquid Jets in a Cross-Airflow
,”
Atomization Sprays
,
17
(
3
), pp.
267
287
.10.1615/AtomizSpr.v17.i3.30
15.
Tambe
,
S.
,
2010
, “
Liquid Jets Injected Into Non-Uniform Crossflow
,”
Ph.D. thesis
, University of Cincinnati, Cincinnati, OH.10.13140/2.1.1639.9685
16.
Tambe
,
S. B.
, and
Jeng
,
S.
,
2008
, “
A Study of Liquid Jets Injected Transversely Into a Swirling Crossflow
,”
ILASS Americas, 21st Annual Conference on Liquid Atomization and Spray
, Orlando, FL, May 18–21, pp.
1
12
.https://www.researchgate.net/publication/271445313_A_Study_of_Liquid_Jets_Injected_Transversely_into_a_Swirling_Crossflow
17.
Prakash
,
S. R.
,
Jain
,
S. S.
,
Lovett
,
J. A.
,
Raghunandan
,
B. N.
,
Ravikrishna
,
R. V.
, and
Tomar
,
G.
,
2019
, “
Detailed Numerical Simulations of Atomization of a Liquid Jet a Swirling Gas Crossflow
,”
Atomization Sprays
,
29
(
7
), pp.
577
603
.10.1615/AtomizSpr.2019031322
18.
Prakash
,
S.
,
Jain
,
S. S.
,
Raghunandan
,
B. N.
,
Ravikrishna
,
R. V.
, and
Tomar
,
G.
,
2017
, “
Liquid Jet in Swirling Cross Flows- A Numerical Investigation
,”
National Conference on Internal Combustion Engines and Combustion
, Surathkal, Karnataka, India, Feb. 28–Mar. 2, pp.
1
7
.https://web.stanford.edu/~sjsuresh/surya_ncicec_2017.pdf
19.
Sikroria
,
T.
,
Kushari
,
A.
,
Syed
,
S.
, and
Lovett
,
J. A.
,
2014
, “
Experimental Investigation of Liquid Jet Breakup in a Cross Flow of a Swirling Air Stream
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
061501
.10.1115/1.4026244
20.
Sikroria
,
T.
, and
Kushari
,
A.
,
2019
, “
Experimental Analysis and Phenomenological Model for Liquid Jet Breakup in Swirling Flow of Air
,”
ASME J. Eng. Gas Turbines Power
,
141
(
9
), p.
091015
.10.1115/1.4044060
21.
Sikroria
,
T.
, and
Kushari
,
A.
,
2021
, “
Effect of Cross-Flow Swirl on the Trajectory of Spray in an Annular Passage
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051017
.10.1115/1.4049378
22.
Kumar
,
D.
,
Kushari
,
A.
,
Lovett
,
J. A.
, and
Syed
,
S.
,
2015
, “
Primary Breakup of Liquid Jet in an Annular Passage in Crossflow of Air
,”
ASME
Paper No. GTINDIA2015-1342.10.1115/GTINDIA2015-1342
23.
Patil
,
S.
, and
Sahu
,
S.
,
2021
, “
Air Swirl Effect on Spray Characteristics and Droplet Dispersion in a Twin-Jet Crossflow Airblast Injector
,”
Phys. Fluids
,
33
(
7
), p.
073314
.10.1063/5.0054430
24.
Patil
,
S.
, and
Sahu
,
S.
,
2023
, “
Insight Into Liquid Jet Atomization in a Swirling Crossflow Airblast Injector: Application of a Multi-Directional Imaging Technique
,”
Int. J. Multiphase Flow
,
158
, p.
104279
.10.1016/j.ijmultiphaseflow.2022.104279
25.
Yadav
,
N. P.
, and
Kushari
,
A.
,
2010
, “
Effect of Swirl on the Turbulent Behaviour of a Dump Combustor Flow
,”
Proc. Inst. Mech. Eng., Part G
,
224
(
6
), pp.
705
717
.10.1243/09544100JAERO627
26.
Grundmann
,
S.
,
Wassermann
,
F.
,
Lorenz
,
R.
,
Jung
,
B.
, and
Tropea
,
C.
,
2012
, “
Experimental Investigation of Helical Structures in Swirling Flows
,”
Int. J. Heat Fluid Flow
,
37
, pp.
51
63
.10.1016/j.ijheatfluidflow.2012.05.003
27.
Gupta
,
A. K.
,
1984
,
Swirl Flows
,
Abacus Press
,
Cambridge, MA
.
28.
Hsiang
,
L. P.
, and
Faeth
,
G. M.
,
1992
, “
Near-Limit Drop Deformation and Secondary Breakup
,”
Int. J. Multiphase Flow
,
18
(
5
), pp.
635
652
.10.1016/0301-9322(92)90036-G
29.
Becker
,
J.
, and
Hassa
,
C.
,
2002
, “
Breakup and Atomization of a Kerosene Jet in Crossflow at Elevated Pressure
,”
Atomization Sprays
,
12
(
1–3
), pp.
49
68
.10.1615/AtomizSpr.v12.i123.30
30.
Lubarsky
,
E.
,
Reichel
,
J. R.
,
Zinn
,
B. T.
, and
McAmis
,
R.
,
2010
, “
Sprays in Cross Flow: Dependence on Weber Number
,”
ASME J. Eng. Gas Turbines Power
, 132(2), p.
021501
.10.1115/1.2904892
31.
Leong
,
M. Y.
,
Mcdonell
,
V. G.
, and
Samuelsen
,
G. S.
,
2001
, “
Effect of Ambient Pressure on an Airblast Spray Injected Into a Cross Flow
,”
J. Propul. Power
,
17
(
5
), pp.
1076
1084
.10.2514/2.5846
32.
Rachner
,
M.
,
Becker
,
J.
,
Hassa
,
C.
, and
Doerr
,
T.
,
2002
, “
Modelling of the Atomization of a Plain Liquid Fuel Jet in Crossflow at Gas Turbine Conditions
,”
Aerosp. Sci. Technol.
,
6
(
7
), pp.
495
506
.10.1016/S1270-9638(01)01135-X
33.
Bellofiore
,
A.
,
Cavaliere
,
A.
, and
Ragucci
,
R.
,
2007
, “
Air Density Effect on the Atomization of Liquid Jets in Crossflow
,”
Combust. Sci. Technol.
,
179
(
1–2
), pp.
319
342
.10.1080/00102200600809563
34.
Herrmann
,
M.
,
2011
, “
The Influence of Density Ratio on the Primary Atomization of a Turbulent Liquid Jet in Crossflow
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2079
2088
.10.1016/j.proci.2010.07.002
35.
Elshamy
,
O. M.
,
Tambe
,
S. B.
,
Cai
,
J.
, and
Jeng
,
S. M.
,
2006
, “
Structure of Liquid Jets in Subsonic Crossflow at Elevated Ambient Pressures
,”
AIAA
Paper No. 2006–1224.10.2514/6.2006-1224
36.
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2014
, “
Experimental Study of the Effect of Fuel Properties on Spray Performance of Alternative Jet Fuel
,”
ASME
Paper No. GT2014-25842.10.1115/GT2014-25842
37.
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2020
, “
Macroscopic Spray Performance of Alternative and Conventional Jet Fuels at Non-Reacting, Elevated Ambient Conditions
,”
Fuel
,
266
, p.
117023
.10.1016/j.fuel.2020.117023
38.
Amighi
,
A.
,
2008
, “
Droplet Size Distribution for Jets in Crossflows at High Temperature and Pressure
,”
M.S. thesis
,
University of Toronto
,
Toronto, ON, Canada
.https://tspace.library.utoronto.ca/bitstream/1807/111931/1/MR38938.PDF
39.
Amighi
,
A.
, and
Ashgriz
,
N.
,
2019
, “
Trajectory of a Liquid Jet in a High Temperature and Pressure Gaseous Cross Flow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061019
.10.1115/1.4042817
40.
Amighi
,
A.
, and
Ashgriz
,
N.
,
2019
, “
Global Droplet Size in Liquid Jet in a High-Temperature and High-Pressure Crossflow
,”
AIAA J.
,
57
(
3
), pp.
1260
1274
.10.2514/1.J056496
41.
Weisstein
,
E. W.
,
2024
, “
Helix
,” From MathWorld–A Wolfram Web Resource, accessed Nov. 17, 2024, https://mathworld.wolfram.com/Helix.html
You do not currently have access to this content.