A detailed mathematical model is developed in which the heat and mass transfer processes in a micro heat pipe (MHP) are examined. The model describes the distribution of the liquid in a MHP and its thermal characteristics depending upon the liquid charge and the applied heat load. The liquid flow in the triangular-shaped corners of a MHP with polygonal cross section is considered by accounting for the variation of the curvature of the free liquid surface and the interfacial shear stresses due to a liquid-vapor frictional interaction. The predicted results obtained are compared to existing experimental data. The importance of the liquid fill, minimum wetting contact angle, and the shear stresses at the liquid-vapor interface in predicting the maximum heat transfer capacity and thermal resistance of the MHP is demonstrated.

This content is only available via PDF.
You do not currently have access to this content.