A universal constitutive equation between the heat flux vector and the temperature gradient is proposed to cover the fundamental behaviors of diffusion (macroscopic in both space and time), wave (macroscopic in space but microscopic in time), phonon–electron interactions (microscopic in both space and time), and pure phonon scattering. The model is generalized from the dual-phase-lag concept accounting for the lagging behavior in the high-rate response. While the phase lag of the heat flux captures the small-scale response in time, the phase lag of the temperature gradient captures the small-scale response in space. The universal form of the energy equation facilitates identifications of the physical parameters governing the transition from one mechanism (such as diffusion or wave) to another (the phonon–electron interaction).

1.
Anisimov
S. I.
,
Kapeliovich
B. L.
, and
Perel’man
T. L.
,
1974
, “
Electron Emission From Metal Surfaces Exposed to Ultra-short Laser Pulses
.”
Soviet Physics JETP
, Vol.
39
, pp.
375
377
.
2.
Bai, C., and Lavine, A. S., 1992, “Non-equilibrium Hyperbolic Type Heat Conduction Equation,” ASME HTD-Vol. 200, pp. 87–92.
3.
Bai, C., and Lavine, A. S., 1993, “Thermal Boundary Conditions for Hyperbolic Heat Conduction,” ASME HTD-Vol. 253, pp. 37–44.
4.
Baumeister
K. J.
, and
Hamill
T. D.
,
1969
, “
Hyperbolic Heat Conduction Equation—A Solution for the Semi-infinite Body Problem
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
91
, pp.
543
548
.
5.
Bayazitoglu, Y., and Peterson, G. P., eds., 1992, Fundamental Issues in Small-Scale Heat Transfer, ASME HTD-Vol. 227.
6.
Bertman
B.
, and
Sandiford
D. J.
,
1970
, “
Second Sound in Solid Helium
,”
Scientific America
, Vol.
222
, pp.
92
101
.
7.
Brorson
S. D.
,
Fujimoto
J. G.
, and
Ippen
E. P.
,
1987
, “
Femtosecond Electron Heat-Transport Dynamics in Thin Gold Film
,”
Physical Review Letters
, Vol.
59
, pp.
1962
1965
.
8.
Brorson
S. D.
,
Kazeroonian
A.
,
Moodera
J. S.
,
Face
D. W.
,
Cheng
T. K.
,
Ippen
E. P.
,
Dresselhaus
M. S.
, and
Dresselhaus
G.
,
1990
, “
Femtosecond Room-Temperature Measurement of the Electron–Phonon Coupling Constant λ in Metallic Superconductors
.”
Physical Review Letters
, Vol.
64
, pp.
2172
2175
.
9.
Cattaneo
C.
,
1958
, “
A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation
,”
Compte Rendus
, Vol.
247
, pp.
431
433
.
10.
Chester
M.
,
1963
, “
Second Sound in Solids
,”
Physical Review
, Vol.
131
, pp.
2013
2015
.
11.
Coleman
B. D.
,
Fabrizio
M.
, and
Owen
D. R.
,
1982
, “
On the Thermodynamics of Second Sound in Dielectric Crystals
,”
Archive for Rational Mechanics and Analysis
, Vol.
80
, pp.
135
158
.
12.
Coleman, B. D., Fabrizio, M., and Owen, D. R., 1986, “Thermodynamics and the Constitutive Relations for Second Sound in Crystals,” New Perspectives in Thermodynamics, J. Serrin, ed., pp. 171–185.
13.
Elsayed-Ali
H. E.
,
Norris
T. B.
,
Pessot
M. A.
, and
Mourou
G. A.
,
1987
, “
Time-Resolved Observation of Electron-Phonon Relaxation in Copper
,”
Physical Review Letters
, Vol.
58
, pp.
1212
1215
.
14.
Elsayed-Ali
H. E.
,
1991
, “
Femtosecond Thermoreflectivity and Thermotransmissivity of Polycrystalline and Single-Crystalline Gold Films
,”
Physical Review B
, Vol.
43
, pp.
4488
4491
.
15.
Flik
M. I.
, and
Tien
C. L.
,
1990
, “
Size Effect on the Thermal Conductivity of High-Tc Thin-Film Superconductors
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
112
, pp.
872
881
.
16.
Frankel
J. I.
,
Vick
B.
, and
O¨zis¸ik
M. N.
,
1985
, “
Flux Formulation of Hyperbolic Heat Conduction
,”
Journal of Applied Physics
, Vol.
58
, pp.
3340
3345
.
17.
Fujimoto
J. G.
,
Liu
J. M.
, and
Ippen
E. P.
,
1984
, “
Femtosecond Laser Interaction With Metallic Tungsten and Non-equilibrium Electron and Lattice Temperature
,”
Physical Review Letters
, Vol.
53
, pp.
1837
1840
.
18.
Groeneveld, R. H. M., Sprik, R., Wittebrood, M., and Lagendijk, A., 1990, “Ultrafast Relaxation of Electrons Probed by Surface Plasmons at a Thin Silver Film,” in: Ultrafast Phenomena VII, C. B. Harris et al., ed., Springer, Berlin, pp. 368–370.
19.
Guyer
R. A.
, and
Krumhansl
J. A.
,
1966
, “
Solution of the Linearized Phonon Boltzmann Equation
,”
Physical Review
, Vol.
148
, pp.
766
780
.
20.
Joseph
D. D.
, and
Preziosi
L.
,
1989
, “
Heat Waves
,”
Review of Modern Physics
, Vol.
61
, pp.
41
73
.
21.
Joseph
D. D.
, and
Preziosi
L.
,
1990
, “
Addendum to the Paper on Heat Waves
,”
Review of Modern Physics
, Vol.
62
, pp.
375
391
.
22.
Jou
D.
,
Casas-Vazquez
, and
Lebon
J.
,
1988
, “
Extended Irreversible Thermodynamics
,”
Reports on Progress in Physics
, Vol.
51
, pp.
1105
1179
.
23.
Majumdar
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
7
16
.
24.
Morse, P. M., and Feshbach, H., 1953, Methods of Theoretical Physics, Vol. 1, McGraw-Hill, New York.
25.
Qiu
T. Q.
, and
Tien
C. L.
,
1992
, “
Short-Pulse Laser Heating on Metals
,”
International Journal of Heat and Mass Transfer
, Vol.
35
, pp.
719
726
.
26.
Qiu
T. Q.
, and
Tien
C. L.
,
1993
, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
835
841
.
27.
Tzou
D. Y.
,
1989
a, “
On the Thermal Shock Wave Induced by a Moving Heat Source
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
111
, pp.
232
238
.
28.
Tzou
D. Y.
,
1989
b, “
Shock Wave Formation Around a Moving Heat Source in a Solid With Finite Speed of Heat Propagation
,”
International Journal of Heat and Mass Transfer
, Vol.
32
, pp.
1979
1987
.
29.
Tzou
D. Y.
,
1990
a, “
Thermal Shock Waves Induced by a Moving Crack
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
112
, pp.
21
27
.
30.
Tzou
D. Y.
,
1990
b, “
Thermal Shock Waves Induced by a Moving Crack—A Heat Flux Formulation
,”
International Journal of Heat and Mass Transfer
, Vol.
33
, pp.
877
885
.
31.
Tzou
D. Y.
,
1991
a, “
The Effect of Internal Heat Transfer in Cavities on the Overall Thermal Conductivity
,”
International Journal of Heat and Mass Transfer
, Vol.
34
, pp.
1839
1846
.
32.
Tzou
D. Y.
,
1991
b, “
A Universal Model for the Overall Thermal Conductivity of Porous Media
,”
Journal of Composite Materials
, Vol.
25
, pp.
1064
1084
.
33.
Tzou, D. Y., 1992a, “Thermal Shock Phenomena Under High-Rate Response in Solids,” in: Annual Review of Heat Transfer, Chang-Lin Tien, ed., Hemisphere Publishing Inc., Washington, DC, Chap. 3, pp. 111–185.
34.
Tzou
D. Y.
,
1992
b, “
Thermal Resonance Under Frequency Excitations
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
114
, pp.
310
316
.
35.
Tzou
D. Y.
,
1992
c, “
Damping and Resonance Characteristics of Thermal Waves
,”
ASME Journal of Applied Mechanics
, Vol.
59
, pp.
862
867
.
36.
Tzou
D. Y.
,
1993
, “
An Engineering Assessment to the Relaxation Time in the Thermal Wave Theory
,”
International Journal of Heat and Mass Transfer
, Vol.
36
, pp.
1845
1851
.
37.
Tzou
D. Y.
,
O¨zis¸ik
M. N.
, and
Chiffelle
R. J.
,
1994
, “
The Lattice Temperature in the Microscopic Two-Step Model
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
1034
1038
.
38.
Vernotte
P.
,
1958
, “
Les Paradoxes de la The´orie Continue de l’E´quation de la Chaleur
,”
Compte Rendus
, Vol.
246
, pp.
3154
3155
.
39.
Vemotte
P.
,
1961
, “
Some Possible Complications in the Phenomena of Thermal Conduction
,”
Compte Rendus
, Vol.
252
, pp.
2190
2191
.
40.
Vick
B.
, and
O¨zis¸ik
M. N.
,
1983
, “
Growth and Decay of a Thermal Pulse Predicted by the Hyperbolic Heat Conduction Equation
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
105
, pp.
902
907
.
This content is only available via PDF.
You do not currently have access to this content.