This paper presents local heat transfer data for a planar, free-surface jet of water impinging normal on a uniformly heated surface. The hydrodynamic conditions of the jet were altered through the use of different nozzle types (parallel-plate and converging) and flow manipulators (wire grid and screens) to investigate the relationship between jet turbulence and local impingement heat transfer. The flow structures for each of the various nozzle conditions are reported in a companion paper (Wolf et al., 1995), and results are used in this paper to interpret their effect on local heat transfer. In addition to qualitative interpretations, correlations are developed for both the onset of transition to turbulence and the dimensionless convection coefficient at the stagnation point. Higher levels of jet turbulence are shown to induce transition to a turbulent boundary layer at smaller streamwise distances from the stagnation point. The effect of stream-wise turbulence intensity on the convection coefficient is shown to scale approximately as the one-quarter power.

1.
Davenport
M. E.
,
Magee
P. M.
, and
Leppert
G.
,
1962
, “
Thermocouple Attachment to a Direct-Current Heater
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
84
, pp.
187
188
.
2.
Downs, S. J., and James, E. H., 1987, “Jet Impingement Heat Transfer—A Literature Survey,” ASME Paper No. 87-HT-35.
3.
Driest
E. R. van
, and
Blumer
C. B.
,
1963
, “
Boundary Layer Transition: Free-Stream Turbulence and Pressure Gradient Effects
,”
AIAA Journal
, Vol.
1
, pp.
1303
1306
.
4.
Dutton
R.
, and
Lee
E. C.
,
1959
, “
Surface-Temperature Measurement of Current-Carrying Objects
,”
ISA Journal
, Vol.
6
, No.
12
, pp.
49
51
.
5.
Falkner
V. M.
, and
Skan
S. W.
,
1931
, “
Some Approximate Solutions of the Boundary Layer Equations
,”
Philosophical Magazine
, Vol.
12
, pp.
865
896
.
6.
Gazley
C.
,
1953
, “
Boundary-Layer Stability and Transition in Subsonic and Supersonic Flow
,”
Journal of the Aeronautical Sciences
, Vol.
20
, pp.
19
28
.
7.
Hargrave
G. K.
,
Fairweather
M.
, and
Kilham
J. K.
,
1985
, “
Turbulence Enhancement of Stagnation Point Heat Transfer on a Body of Revolution
,”
International Journal of Heat and Fluid Flow
, Vol.
6
, pp.
91
98
.
8.
Hoogendoorn
C. J.
,
1977
, “
The Effect of Turbulence on Heat Transfer at a Stagnation Point
,”
International Journal of Heat and Mass Transfer
, Vol.
20
, pp.
1333
1338
.
9.
Kestin, J., and Wood, R. T., 1970, “The Mechanism Which Causes Free-Stream Turbulence to Enhance Stagnation-Line Heat and Mass Transfer,” Proceedings of the Fourth International Heat Transfer Conference, U. Grigull and E. Hahne, eds., Elsevier, Amsterdam, Vol. II, FC2.7.
10.
Kestin
J.
, and
Wood
R. T.
,
1971
, “
The Influence of Turbulence on Mass Transfer From Cylinders
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
93
, pp.
321
327
.
11.
Kline
S. J.
, and
McClintock
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mechanical Engineering
, Vol.
75
, Jan., pp.
3
8
.
12.
Lowery
G. W.
, and
Vachon
R. I.
,
1975
, “
The Effect of Turbulence on Heat Transfer From Heated Cylinders
,”
International Journal of Heat and Mass Transfer
, Vol.
18
, pp.
1229
1242
.
13.
McMurray, D. C., Myers, P. S., and Uyehara, O. A., 1966, “Influence of Impinging Jet Variables on Local Heat Transfer Coefficients Along a Flat Surface With Constant Heat Flux,” Proceedings of the Third International Heat Transfer Conference, AIChE, New York, Vol. II, pp. 292–299.
14.
Mehendale, A. B., Han, J. C., and Ou, S., 1990, “Influence of High Mainstream Turbulence on Leading Edge Heat Transfer,” AIAA/ASME Thermophysics and Heat Transfer Conference—Heat Transfer in Turbulent Flow, R. S. Amano et al., eds., ASME HTD-Vol. 138, pp. 27–35.
15.
Metzger, D. E., Cummings, K. N., and Ruby, W. A., 1974, “Effects of Prandtl Number on Heat Transfer Characteristics of Impinging Liquid Jets,” Proceedings of the Fifth International Heat Transfer Conference, JSME, Tokyo, Vol. II, pp. 20–24.
16.
Moffat
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Experimental Thermal and Fluid Science
, Vol.
1
, pp.
3
17
.
17.
Pan
Y.
,
Stevens
J.
, and
Webb
B. W.
,
1992
, “
Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetric, Impinging Free-Surface Liquid Jets: Part 2—Local Heat Transfer
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
114
, pp.
880
886
.
18.
Sadeh
W. Z.
,
Sutera
S. P.
, and
Maeder
P. F.
,
1970
, “
An Investigation of Vorticity Amplification in Stagnation Flow
,”
Z. Angew. Math. Phys.
, Vol.
21
, pp.
717
742
.
19.
Sadeh
W. Z.
, and
Brauer
H. J.
,
1980
, “
A Visual Investigation of Turbulence in Stagnation Flow About a Circular Cylinder
,”
Journal of Fluid Mechanics
, Vol.
99
, pp.
53
64
.
20.
Sadeh, W. Z., and Sullivan, P. P., 1980, “Turbulence Amplification in Flow About an Airfoil,” ASME Paper No. 80-GT-111.
21.
Sadeh
W. Z.
, and
Brauer
H. J.
,
1981
, “
Coherent Substructure of Turbulence Near the Stagnation Zone of a Bluff Body
,”
Journal of Wind Engineering and Industrial Aerodynamics
, Vol.
8
, pp.
59
72
.
22.
Smith
M. C.
, and
Kuethe
A. M.
,
1966
, “
Effects of Turbulence on Laminar Skin Friction and Heat Transfer
,”
Physics of Fluids
, Vol.
9
, pp.
2337
2344
.
23.
Stevens
J.
,
Pan
Y.
, and
Webb
B. W.
,
1992
, “
Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetric, Impinging Free-Surface Liquid Jets: Part 1—Turbulent Flow Structure
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
114
, pp.
874
879
.
24.
Sutera
S. P.
,
Maeder
P. F.
, and
Kestin
J.
,
1963
, “
On the Sensitivity of Heat Transfer in the Stagnation-Point Boundary Layer to Free-Stream Vorticity
,”
Journal of Fluid Mechanics
, Vol.
16
, pp.
497
520
.
25.
Tran, L. T., and Taulbee, D. B., 1989, “Prediction of Stagnation Point Heat Transfer With Free Stream Turbulence,” Proceedings of the 1989 National Heat Transfer Conference—Heat Transfer in Convective Flows, R. K. Shah, ed., ASME HTD-Vol. 107, pp. 27–34.
26.
Vader
D. T.
,
Incropera
F. P.
, and
Viskanta
R.
,
1991
a, “
A Method for Measuring Steady Local Heat Transfer to an Impinging Liquid Jet
,”
Experimental Thermal and Fluid Science
, Vol.
4
, pp.
1
11
.
27.
Vader
D. T.
,
Incropera
F. P.
, and
Viskanta
R.
,
1991
b, “
Local Convective Heat Transfer From a Heated Surface to an Impinging, Planar Jet of Water
,”
International Journal of Heat and Mass Transfer
, Vol.
34
, pp.
611
623
.
28.
VanFossen
G. J.
, and
Simoneau
R. J.
,
1987
, “
A Study of the Relationship Between Free-Stream Turbulence and Stagnation Region Heat Transfer
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
109
, pp.
10
15
.
29.
Wolf
D. H.
,
Viskanta
R.
, and
Incropera
F. P.
,
1990
, “
Local Convective Heat Transfer From a Heated Surface to a Planar Jet of Water With a Nonuniform Velocity Profile
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
112
, pp.
899
905
.
30.
Wolf, D. H., 1993, “Turbulent Development in a Free-Surface Jet and Impingement Boiling Heat Transfer,” Ph.D. Thesis, Purdue University, West Lafayette, IN.
31.
Wolf
D. H.
,
Viskanta
R.
, and
Incropera
F. P.
,
1995
, “
Turbulence Dissipation in a Free-Surface Jet of Water and Its Effect on Local Impingement Heat Transfer From a Heated Surface: Part 1—Flow Structure
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
117
, pp.
85
94
.
32.
Zumbrunnen
D. A.
,
Incropera
F. P.
, and
Viskanta
R.
,
1989
, “
Convective Heat Transfer Distributions on a Plate Cooled by Planar Water Jets
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
111
, pp.
889
896
.
This content is only available via PDF.
You do not currently have access to this content.