A molten metal droplet landing and bonding to a solid substrate is investigated with combined analytical, numerical, and experimental techniques. This research supports a novel, thermal spray shape deposition process, referred to as microcasting, capable of rapidly manufacturing near netshape, steel objects. Metallurgical bonding between the impacting droplet and the previous deposition layer improves the strength and material property continuity between the layers, producing high-quality metal objects. A thorough understanding of the interface heat transfer process is needed to optimize the microcast object properties by minimizing the impacting droplet temperature necessary for superficial substrate remelting, while controlling substrate and deposit material cooling rates, remelt depths, and residual thermal stresses. A mixed Lagrangian–Eulerian numerical model is developed to calculate substrate remelting and temperature histories for investigating the required deposition temperatures and the effect of operating conditions on remelting. Experimental and analytical approaches are used to determine initial conditions for the numerical simulations, to verify the numerical accuracy, and to identify the resultant microstructures. Numerical results indicate that droplet to substrate conduction is the dominant heat transfer mode during remelting and solidification. Furthermore, a highly time-dependent heat transfer coefficient at the droplet/substrate interface necessitates a combined numerical model of the droplet and substrate for accurate predictions of the substrate remelting. The remelting depth and cooling rate numerical results are also verified by optical metallography, and compare well with both the analytical solution for the initial deposition period and the temperature measurements during droplet solidification.

1.
Amon, C. H., Beuth, J. L., Kirchner, H., Merz, R., Prinz, F. B., Schmaltz, K. S., and Weiss, L. E., 1993a, “Material Issues in Layered Forming,” Proc. Solid Freeforming Fabrication Symposium, Austin, TX, pp. 1–10.
2.
Amon, C. H., Prinz, F. B., and Schmaltz, K. S., 1993b, “Numerical Modelling of Thermal Spray Systems,” Technical Report EDRC 24-106-93, Carnegie Mellon University, Pittsburgh, PA.
3.
Amon, C. H., Merz, R., Prinz, F. B., and Schmaltz, K. S., 1994a, “Thermal Modelling and Experimental Testing of MD* Spray Shape Deposition Processes,” Proceedings of the Tenth International Heat Transfer Conf., Brighton, United Kingdom, Vol. 7, pp. 321–326.
4.
Amon, C. H., Prinz, F. B., and Schmaltz, K. S., 1994b, “Numerical Modeling and Experimental Testing of Metal Droplet Deposition Heat Transfer With Substrate Remelting as Applied to the Microcasting Deposition Process,” Tech. Report EDRC 24-116-94, Carnegie Mellon University, Pittsburgh, PA.
5.
Bennett
T.
, and
Poulikakos
D.
,
1994
, “
Heat Transfer Aspects of Splat-Quench Solidification: Modelling and Experiment
,”
J. Mat. Sci.
, Vol.
29
, pp.
2025
2039
.
6.
Bertagnolli, M., Marchese, M., Jacucci, G., St. Doltsinis, I., and Noelting, S., 1994, “Finite Element Thermomechanical Simulation of Droplets Impacting on a Rigid Substrate,” Proceedings, Energy Tech. Conf. and Exhib. ASME Symp. on Materials, Design and Analysis, ETCE, New Orleans, LA.
7.
Bewlay
B. P.
, and
Cantor
B.
,
1991
, “
The Relationship Between Thermal History and Microstructure in Spray-Deposited Tin-Lead Alloys
,”
J. Mat. Res.
, Vol.
6
, pp.
1433
1454
.
8.
Boyer, H. E., ed., 1977, Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park, OH, pp. 15–39.
9.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Clarendon Press, Oxford, pp. 282–291.
10.
Chin, R. K., Beuth, J. L., and Amon, C. H., 1995, “Droplet-Level Thermo-mechanical Analysis of the Microcasting Process,” Tech. Report EDRC 24-120-95, Carnegie Mellon University, Pittsburgh, PA.
11.
Crank, J., 1984, Free and Moving Boundary Problems, Oxford Press, New York, pp. 1–29.
12.
El-Kaddah
N.
,
McKelliget
J.
, and
Szekely
J.
,
1984
, “
Heat Transfer and Fluid Flow in Plasma Spraying
,”
Metall. Trans. B
, Vol.
15B
, pp.
59
70
.
13.
Griffith
R.
, and
Nassersharif
B.
,
1990
, “
Comparison of One-Dimensional Interface-Following and Enthalpy Methods for the Numerical Solution of Phase Change
,”
Numerical Heat Transfer
, Part B, Vol.
18
, pp.
169
187
.
14.
Guyer, E. C., ed., 1989, Hndbk. of Appl. Thermal Design, McGraw-Hill, New York, pp. 67–72.
15.
Honeycombe, R. W. K., 1981, Steel Microstructure and Properties, The Mac-Millan Co., London.
16.
Kang
B.
,
Zhao
Z.
, and
Poulikakos
D.
,
1994
, “
Solidification of Liquid Metal Droplets Impacting Sequentially on a Solid Surface
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
436
445
.
17.
Kirchner, H., and Prinz, F. B., 1993, “Adhesion of Liquid Droplet to Solid Substrates,” Technical Report EDRC 24-102-93, Carnegie Mellon University, Pittsburgh, PA.
18.
Liu
H.
,
Lavernia
E. J.
, and
Rangel
R. H.
,
1993
, “
Numerical Simulation of Substrate Impact and Freezing of Droplets in Plasma Spray Processes
,”
J. Phys. D Appl. Phys.
, Vol.
26
, pp.
1900
1908
.
19.
Madejski
J.
,
1983
, “
Droplets on Impact With a Solid Surface
,”
Int. J. Heat Mass Transfer
, Vol.
26
, pp.
1098
1102
.
20.
Mathur
P.
,
Apelian
D.
, and
Lawley
A.
,
1989
, “
Analysis of the Spray Deposition Process
,”
Acta Metallica
, Vol.
37
, pp.
429
443
.
21.
Merz, R., Prinz, F. B., Ramaswami, K., Terk, M., and Weiss, L. E., 1994, “Shape Deposition Manufacturing,” Proceedings, Solid Freeform Fabrication Symposium, Austin, TX, pp. 1–8.
22.
Merz, R., 1994, “Shape Deposition Manufacturing,” Ph.D. Thesis, Department of Electrical Engineering, Technical University of Vienna, Austria.
23.
Pawlowski
L.
,
1981
, “
Temperature Distribution in Plasma-Sprayed Coatings
,”
Thin Solid Films
, Vol.
81
, pp.
79
88
.
24.
Prakash
C.
,
1990
, “
Two-Phase Model for Binary Solid-Liquid Phase Change, Part I: Governing Equations
,”
Numerical Heat Transfer
, Part B, Vol.
18
, pp.
131
145
.
25.
San Marchi
C.
,
Liu
H.
,
Lavernia
E. J.
,
Rangel
R. H.
,
Sickinger
A.
, and
Muehlberger
E.
,
1993
, “
Numerical Analysis of the Deformation and Solidification of a Single Droplet Impinging Onto a Flat Substrate
,”
J. Mat. Sci.
, Vol.
28
, pp.
3313
3321
.
26.
Singer
A. R. E.
,
1982
, “
The Challenge of Spray Forming
,”
Powder Metall.
, Vol.
25
, pp.
195
199
.
27.
Trapaga
G.
, and
Szekely
J.
,
1991
, “
Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes
,”
Metall. Trans. B
, Vol.
22B
, pp.
901
914
.
28.
Trapaga
G.
,
Matthys
E. F.
,
Valencia
J. J.
, and
Szekely
J.
,
1992
, “
Fluid Flow, Heat Transfer and Solidification of Molten Droplets Impinging on Substrates: Comparison of Numerical and Experimental Results
,”
Metall. Trans. B
, Vol.
23B
, pp.
701
718
.
29.
Voller
V. R.
,
Swaminathan
C. R.
, and
Thomas
B. G.
,
1990
, “
Fixed Grid Techniques for Phase Change Problems: A Review
,”
Intl. J. Numerical Meth. Engr.
, Vol.
30
, pp.
875
898
.
30.
Wang
G.-X.
, and
Matthys
E. F.
,
1991
, “
Modelling of Heat Transfer and Solidification During Splat Cooling: Effect of Splat Thickness and Splat/Substrate Thermal Contact
,”
Int. J. Rapid Solidification
, Vol.
6
, pp.
141
174
.
31.
Wang, G.-X., and Matthys, E. F., 1994, “Interfacial Thermal Contact During Rapid Solidification on a Substrate,” Proc. of the Tenth Intl. Heat Transfer Conf., Brighton, United Kingdom, Vol. 4, pp. 169–174.
32.
Weiss
L. E.
,
Prinz
F. B.
,
Adams
D. A.
, and
Siewiorek
D. P.
,
1992
, “
Thermal Spray Shape Deposition
,”
J. Thermal Spray Tech.
, Vol.
1
, pp.
231
238
.
This content is only available via PDF.
You do not currently have access to this content.