A thermal-capillary dynamic model for Czochralski (Cz) growth of silicon single crystal is presented that accounts for convection in the melt, conduction in the crystal, and radiation from the melt free surface and crystal. The shapes of the crystal/melt interface, moving crystal, and free surface are governed by the balance of energy and stresses. Decrease of the melt volume as the crystal is grown is also considered. A control algorithm based on the adjustment of the pull rate and/or crucible wall temperature has been developed. The diameter of the crystal can remain constant or vary with time based on the strategies implemented to control the growth process.
Issue Section:
Featured Section—Heat Transfer in Manufacturing
1.
Atherton
L. J.
Derby
J. J.
Brown
R. A.
1987
, “Radiative Heat Exchange in Czochralski Crystal Growth
,” Journal of Crystal Growth
, Vol. 84
, pp. 57
–78
.2.
Baumgartl
J.
Hubert
A.
Mu¨ller
G.
1993
, “The Use of Magnetohydrodynamic Effects to Investigate Fluid Flow in Electrically Conducting Melts
,” Physics and Fluids
, Vol. A5
, pp. 3280
–3289
.3.
Brown, R. A., 1986, “Interactions between Convection, Segregation and Interface Morphology,” Advanced Crystal Growth, Prentice-Hall, Englewood Cliffs, NJ, pp. 3–94.
4.
Derby
J. J.
Brown
R. A.
1986
, “Thermal-Capillary Analysis of Czochralski and Liquid Encapsulated Czochralski Crystal Growth II. Processing Strategies
,” Journal of Crystal Growth
, Vol. 74
, pp. 604
–624
.5.
Derby
J. J.
Brown
R. A.
1987
, “On the Dynamics of Czochralski Crystal Growth
,” Journal of Crystal Growth
, Vol. 83
, pp. 137
–151
.6.
Derby
J. J.
Atherton
L. J.
Thomas
P. D.
Brown
R. A.
1987
, “Finite Element Methods for Analysis of the Dynamics and Control of Czochralski Crystal Growth
,” Journal of Scientific Computing
, Vol. 2
, No. 4
, pp. 297
–343
.7.
Dupret
F.
Necodeme
P.
Ryckmans
Y.
Wouters
P.
Crochet
M. J.
1990
, “Global Modeling of Heat and Mass Transfer in Crystal Growth Furnaces
,” International Journal of Heat and Mass Transfer
, Vol. 33
, pp. 1849
–1871
.8.
Dupret, F., and Van den Bogaert, N., 1994, “Modeling Bridgman and Czochralski Growth,” Handbook of Crystal Growth, Vol. 2b, D. T. J. Hurle, ed., North-Holland, New York.
9.
Gevelber
M. A.
Stephanopoulos
G.
1987
, “Dynamics and Control of the Czochralski Process
,” Journal of Crystal Growth
, Vol. 84
, pp. 647
–668
.10.
Hurle
D. T. J.
Joyce
G. C.
Ghassempoory
M.
Crowley
A. B.
Stern
E. J.
1990
, “The Dynamics of Czochralski Growth
,” Journal of Crystal Growth
, Vol. 100
, pp. 11
–25
.11.
Hurle, D. T. J., and Cockayne, B., 1994, “Czochralski Growth,” Handbook of Crystal Growth, Vol. 2a, D. T. J. Hurle, ed., North-Holland, New York, pp. 99–211.
12.
Irizarry-Rivera
R.
Seider
W. D.
1997
, “Model-Predictive Control of the Czochralski Crystallization Process Part I. Conduction-Dominated Melt
,” Journal of Crystal Growth
, Vol. 178
, pp. 593
–611
.13.
Kinney
T. A.
Bornside
D. E.
Brown
R. A.
1993
, “Quantitative Assessment of an Integrated Hydrodynamic Thermal-Capillary Model for Large-Diameter Czochralski Growth of Silicon: Comparison of Predicted Temperature Field with Experiment
,” Journal of Crystal Growth
, Vol. 126
, pp. 413
–434
.14.
Langlois
W. E.
Kim
K. M.
Walker
J. S.
1993
, “Hydromagnetic Flows and Effects on Czochralski Silicon Crystals
,” Journal of Crystal Growth
, Vol. 126
, pp. 352
–372
.15.
Moallemi
M. K.
Zhang
H.
1994
, “A General Numerical Procedure for Multilayer Multistep IC Process, Simulation
,” IEEE Transactions on Computer-Aided Design of Intergrated Circuits and Systems
, Vol. 13
, No. 11
, pp. 1379
–1390
.16.
Mu¨ller, G., 1988, “Convection and inhomogeneities in crystal growth from melt,” Crystals, Vol. 12, Springer-Verlag, Berlin.
17.
Nunes, E. M., Naraghi, M. H. N., Zhang, H., and Prasad, V., 1996, “Combined Radiative-Convection Modeling for Materials Processes: Application to Crystal Growth,” ASME Proceedings of the 31st National Heat Transfer Conference, Vol. HTD-Vol. 323, Houston, TX, pp. 27–37.
18.
Prasad, V., Zhang, H., and Anselmo, A., 1997, “Transport Phenomena in Czochralski Crystal Growth Processes,” Advances in Heat Transfer, Vol. 30, Academic Press, New York, pp. 313–435.
19.
Sabhapathy
P.
Salcudean
M. E.
1991
, “Numerical Study of Czochralski Growth of Silicon in an Axisymmetric Magnetic Field
,” Journal of Crystal Growth
, Vol. 113
, pp. 164
–180
.20.
Shimura, F., 1989, Semiconductor Silicon Crystal Technology, Academic Press, New York.
21.
Stephanopoulos, G., 1884, Chemical Process Control, Prentice-Hall, Englewood Cliffs, NJ.
22.
Surek
T.
Coriell
S. R.
Chalmers
B.
1980
, “The Growth of Shaped Crystals from the Melt
,” Journal of Crystal Growth
, Vol. 50
, pp. 21
–32
.23.
Thomas
P. D.
Derby
J. J.
Atherton
L. J.
Brown
R. A.
Wargo
M. J.
1989
, “Dynamics of Liquid-Encapsulated Czochralski Growth of Gallium Arsenide Comparing Model with Experiment
,” J. Crystal Growth
, Vol. 96
, pp. 135
–152
.24.
Van den Bogaert
N.
Dupret
F.
1997
, “Dynamic Global Simulation of the Czochralski Process I. Principles of the Method
,” Journal of Crystal Growth
, Vol. 171
, pp. 65
–76
.25.
Van den Bogaert
N.
Dupret
F.
1997
, “Dynamic Global Simulation of the Czochralski Process II. Analysis of the Growth of a Germanium Crystal
,” Journal of Crystal Growth
, Vol. 171
, pp. 77
–93
.26.
Zhang
H.
Moallemi
M. K.
1995
, “A Multizone Adaptive Grid Generation Technique for Simulation of Moving and Free Boundary Problems
,” Numerical Heat Transfer
, Vol. B27
, pp. 255
–276
.27.
Zhang
H.
Prasad
V.
1995
, “A Multizone Adaptive Process Model for Crystal Growth at Low and High Pressures
,” Journal of Crystal Growth
, Vol. 155
, pp. 47
–65
.28.
Zhang
H.
Prasad
V.
Moallemi
M. K.
1996
a, “A Numerical Algorithm Using Multizone Adaptive Grid Generation for Multiphase Transport Processes with Moving and Free Boundaries
,” Numerical Heat Transfer
, Vol. B29
, pp. 399
–421
.29.
Zhang
H.
Prasad
V.
Bliss
D. F.
1996
b, “Transport Phenomena in High Pressure Crystal Growth Systems for III-V Compounds
,” Journal of Crystal Growth
, Vol. 169
, pp. 250
–260
.30.
Zhang
H.
Prasad
V.
Bliss
D.
1996
c, “Transport Phenomena in a High Pressure Crystal Growth System: In-situ Synthesis for InP Melt
,” Journal of Crystal Growth
, Vol. 177
, pp. 196
–206
.31.
Zhang
H.
Zheng
L. L.
Prasad
V.
Larson
D. F.
1998
, “Local and Global Simulations of Bridgman and Czochralski Crystal Growth
,” ASME JOURNAL OF HEAT TRANSFER
, Vol. 120
, pp. 865
–873
.32.
Zou
Y. F.
Zhang
H.
Prasad
V.
1996
, “Dynamics of Melt-Crystal Interface and Thermal Stresses in Czochralski Crystal Growth Processes
,” Journal of Crystal Growth
, Vol. 166
, pp. 476
–482
.
This content is only available via PDF.
Copyright © 1998
by The American Society of Mechanical Engineers
You do not currently have access to this content.