The mechanism of dopant transport and segregation in high-pressure liquid-encapsulated Czochralski (HPLEC) grown III-V compound crystals (e.g., GaAs, InP) has been numerically studied using an integrated model, MASTRAPP. The model approximates the melt flow in the crucible as a quasi-steady-state, laminar, and axisymmetric flow, but the gas flow is considered as turbulent. Based on the physics of the growth process, a two-time-level scheme has been implemented where the dopant transport and growth are simulated at a smaller time scale while flow and temperature solutions are obtained from quasi-static calculations. Detailed numerical analyses are performed for the conditions of pure crystal rotation, pure thermally driven natural convection, and pure crucible rotation as well as for mixed flow with all of these forces present simultaneously. The dopant transport and segregation in these cases are well correlated to the corresponding melt flow pattern. Very weak radial segregation is predicted for pure crystal rotation because the resulting melt flow leads to a fairly flat solute boundary layer. The natural convection, on the other hand, produces a nonuniform boundary layer along the melt/crystal interface. This leads to a strong radial segregation with a high concentration along the central axis of the crystal. The crucible rotation has a similar effect. The combined effect of all of these flow mechanisms produces a strong radial segregation, whose extent depends on the relative strength of the driving forces. In all of these cases, strong melt flows lead to thin boundary layers that result in decreased longitudinal segregation. The predictions agree well with the experimental observations reported in the literature.

1.
Anselmo
A.
,
Prasad
V.
,
Koziol
J.
, and
Gupta
K. P.
,
1993
, “
Oscillatory Convection in Low Aspect Ratio Czochraiski Melts
,”
J. Crystal Growth
, Vol.
134
, pp.
116
140
.
2.
Baralis
G.
, and
Perosino
M. C.
,
1968
, “
Convection-Induced Impurity Distribution During Germanium Crystal Pulling
,”
J. Crystal Growth
, Vol.
3
, pp.
651
655
.
3.
Benson
K. E.
,
1965
, “
Radial Solute Distribution in Czochralski-Grown Silicon Crystals
,”
Electrochem. Technol.
, Vol.
3
, pp.
332
335
.
4.
Bliss, D., 1998, private communication.
5.
Burton
J. A.
,
Prim
R. C.
, and
Slichter
W. P.
,
1953
, “
The Distribution of Solute in Crystals Grown from the Melt. Part I. Theoretical
,”
J. Chem. Phys.
, Vol.
21
, pp.
1987
1991
.
6.
Coriell
S. R.
, and
Sekerka
R. F.
,
1979
, “
Lateral Solute Segregation during Unidirectional Solidification of a Binary Alloy with a Curved Solid-Liquid Interface
,”
J. Crystal Growth
, Vol.
46
, pp.
479
482
.
7.
Derby
J. J.
and
Brown
R. A.
,
1988
, “
On the Quasi-Steady-State Assumption in Modeling Czochralski Crystal Growth
,”
J. Crystal Growth
, Vol.
87
, pp.
251
160
.
8.
Favier
J. J.
,
1981
, “
Macrosegregation—I Unified Analysis during Non-Steady State Solidification
,”
Acta Metall.
, Vol.
29
, pp.
197
204
.
9.
Carruthers
J. R.
,
1967
, “
Radial Solute Segregation in Czochralski Growth
,”
J. Electrochem. Soc: Solid State Set
, Vol.
114
, pp.
959
962
.
10.
Garandet
J. P.
,
1993
, “
Microsegregation in Crystal Growth From the Melt: An Analytical Approach
,”
J. Crystal Growth
, Vol.
131
, pp.
431
438
.
11.
Garandet
J. P.
,
Favier
J. J.
, and
Camel
D.
,
1994
, “
Segregation Phenomena in Crystal Growth from the Melt
,”
Handbook of Crystal Growth
, Vol.
2
, Chapter 12, pp.
659
705
.
12.
Hoshikawa
K.
,
Kohda
H.
, and
Hirata
H.
,
1984
, “
Homogeneous Dopant Distribution of Silicon Crystal Grown by Vertical Magnetic Field-Applied Czochralski Method
,”
Japan. J. Appl. Phys.
, Vol.
23
, pp.
L37–L39
L37–L39
.
13.
Hurle
D. T. J.
, and
Cockayne
B.
,
1994
, “
Czochralski Growth
,”
Handbook of Crystal Growth
, Vol.
2
, Chapter 3, pp.
99
211
.
14.
Hurle
D. T. J.
, and
Series
R. W.
,
1985
, “
Effective Distribution Coefficient in Magnetic Czochralski Growth
,”
J. Crystal Growth
, Vol.
73
, pp.
1
9
.
15.
Hurle
D. T. J.
,
Jakeman
E.
, and
Pike
E. R.
,
1968
, “
Striated Solute Distributions Produced by Temperature Oscillations during Crystal Growth from the Melt
,”
J. Crystal Growth
, Vol.
3/4
, pp.
633
640
.
16.
Jordan
S.
,
1985
a, “
Estimated Thermal Diffusivity, Prandtl Number and Gras-hof Number of Molten GaAs, InP, and GaSn
,”
J. Crystal Growth
, Vol.
71
, pp.
551
558
.
17.
Jordan
S.
,
1985
b, “
Some Thermal and Mechanical Properties of InP Essential to Crystal Growth Modeling
,”
J. Crystal Growth
, Vol.
71
, pp.
559
565
.
18.
Kaddeche
S.
,
Garandet
J. P.
,
Barat
C.
,
Ben
Hadid, H.
, and
Henry
D.
,
1996
, “
Interface Curvature and Convection Related Macrosegregation in the Vertical Bridgman Configuration
,”
J. Crystal Growth
, Vol.
168
, pp.
144
152
.
19.
Kim
K. M.
, and
Langlois
W. E.
,
1986
, “
Computer Simulation of Boron Transport in Magnetic Czochralski Growth of Silicon
,”
J. Electrochem. Soc. Solid-State Scl. Tech.
, Vol.
133
, pp.
2586
2590
.
20.
Kim
K. M.
, and
Langlois
W. E.
,
1989
, “
Dopant Segregation in CZ and MCZ silicon crystal growth: A Comparison between experiment and numerical simulation
,”
J. Electrochem. Soc. Solid-State Sci. Tech.
, Vol.
136
, pp.
1137
1142
.
21.
Muller, G., 1988, Crystal growth from the melt, Springer-Verlag, Berlin.
22.
Mukherjee
D. K.
,
Prasad
V.
,
Dutta
P.
, and
Yuan
T.
,
1996
, “
Liquid Crystal Visualization of the Effects of Crucible and Crystal Rotation on Cz Melt Flows
,”
J. Crystal Growth
, Vol.
169
, pp.
136
149
.
23.
Nunes
E. M.
,
Naraghi
M. H. N.
,
Zhang
H.
, and
Prasad
V.
,
1996
, “
Combined Radiation-Convection Modeling for Material Processes: Application to Crystal Growth
,”
Transport Phenomena in Materials and Manufacturing Processes
, ASME HTD-Vol.
323
, pp.
27
37
.
24.
Ostrogorsky
A. G.
, and
Muller
G.
,
1992
, “
A Model of Effective Segregation Coefficient, Accounting for Convection in the Solute Layer at the growth Interface
,”
J. Crystal Growth
, Vol.
121
, pp.
587
598
.
25.
Prasad
V.
,
Bliss
D. F.
, and
Adamski
J. A.
,
1994
, “
Thermal Characterization of the High Pressure Crystal Growth System for In-Situ Synthesis and Growth of InP Crystal
,”
J. Crystal Growth
, Vol.
142
, pp.
21
30
.
26.
Ristorcelli
J. R.
, and
Lumley
J. L.
,
1992
, “
Instability, Transition and Turbulence in the Czochralski Crystal Melt
,”
J. Crystal Growth
, Vol.
116
, pp.
447
460
.
27.
Wheeler
A. A.
,
1989
, “
Boundary Layer Models in Czochralski Crystal Growth
,”
J. Crystal Growth
, Vol.
97
, pp.
64
75
.
28.
Wilson
A. O.
,
1978
, “
A New Look at the Burton, Prim, and Slichter Model of Segregation during Crystal Growth from the Melt
,”
J. Crystal Growth
, Vol.
44
, pp.
371
376
.
29.
Wilson
A. O.
,
1980
, “
The Effect of Fluctuating Growth Rates on Segregation in Crystals Grown from the Melt I. No Back Melting
,”
J. Crystal Growth
, Vol.
48
, pp.
435
450
.
30.
Wolff
F.
, and
Viskanta
R.
,
1988
, “
Solidification of a Pure Metal at a Vertical Wall in the Presence of Liquid Superheat
,”
Int. J. Heat Mass Transfer
, Vol.
31
, pp.
1735
1744
.
31.
Yen
C. T.
, and
Tiller
W. A.
,
1992
, “
Incorporating Convection into One-dimensional Solute Redistribution during Crystal Growth from the Melt I. The Steady State Solution
,”
J. Crystal Growth
, Vol.
118
, pp.
259
167
.
32.
Zhang
H.
, and
Prasad
V.
,
1995
, “
A Multizone Adaptive Process Model for Crystal Growth at Low and High Pressures
,”
J. Crystal Growth
, Vol.
155
, pp.
47
65
.
33.
Zhang
H.
, and
Moallemi
M. K.
,
1995
, “
A Multizone Adaptive Grid Generation Technique for Simulation of Moving and Free Boundary Problems
,”
Numerical Heat Transfer
, Part B, Vol.
27
, pp.
255
276
.
34.
Zhang
H.
,
Moallemi
M. K.
, and
Prasad
V.
,
1996
a, “
A Numerical Algorithm Using Multizone Grid Generation for Multiphase Transport Processes with Moving and free Boundaries
,”
Numerical Heat Transfer
, Part B, Vol.
29
, pp.
399
421
.
35.
Zhang
H.
,
Prasad
V.
, and
Bliss
D. F.
,
1996
b, “
Transport Phenomena in High Pressure Crystal Growth Systems for III-V Compounds
,”
J. Crystal Growth
, Vol.
169
, pp.
250
260
.
36.
Zhang, H., Zheng, L. L., Prasad, V., and Larson, D. F., Jr., 1997, “Local and Global Simulations of Bridgman and Czochralski Crystal Growth,” ASME Journal of Heat Transfer, in press.
37.
Zhang, T., Wang, G.-X., Ladeinde, F., and Prasad, V., 1998, “Turbulent Transport of Oxygen in Czochralski Growth of Large Silicon Crystals,” The Proceedings of the 12th Int. Conf. Crystal Growth, Israel, accepted for publication.
38.
Zou, Y. F., 1997, “Coupled Convection, Segregation, and Thermal Stress Modeling of Low and High Pressure Czochralski Crystal Growth,” Doctoral thesis, State University of New York, Stony Brook, NY.
39.
Zou
Y. F.
,
Zhang
H.
, and
Prasad
V.
,
1996
, “
Dynamics of Melt-Crystal Interface and Thermal Stresses in Czochralski Crystal Growth Processes
,”
J. Crystal Growth
, Vol.
166
, pp.
476
482
.
40.
Zou
Y. F.
,
Wang
G. X.
,
Zhang
H.
,
Prasad
V.
, and
Bliss
D. F.
,
1997
, “
Macrosegregation, Dynamics of Interface and Stresses in High Pressure LEC Growth Crystals
,”
J. Crystal Growth.
, Vol.
180
, pp.
524
533
.
41.
Zuo
R.
, and
Guo
Z.
,
1996
, “
Two-Dimensional Analysis on Solute Segregation in Crystal Growth From Melt: I. Solution at Crystal/Melt Interface
,”
J. Crystal Growth
, Vol.
158
, pp.
377
384
.
This content is only available via PDF.
You do not currently have access to this content.