Abstract
This paper concerns the determination of the effective thermal conductivity of heterogeneous media with randomly dispersed inclusions. Inclusions of arbitrary shape can be considered since the self-consistent problem is solved numerically with the finite element method. Results for many different cases of heterogeneous media with axially symmetrical inclusions are presented. Moreover, the influence of the inclusion’s shape on the pseudo-percolation threshold is investigated. [S0022-1481(00)00801-X]
Issue Section:
Technical Notes
1.
Lord
Rayleigh
,
1892
, “On the Influence of the Obstacles in
Rectangular Order Upon the Properties of a Medium
,”
Philos. Mag.
, 134
, pp.
481
–502
.2.
Wiener
,
O.
,
1912
, Abh. Sa¨chs. Ges. (ahad) Wiss.
,
32
, p.
509
509
.3.
Buyevich
, Y.
A.
, 1974
,
“On the Thermal Conductivity of Granular
Material
,” Chem. Eng. Sci.
,
29
, pp.
37
–48
.4.
Buyevich
, Y.
A.
, 1992
,
“Heat Mass Transfer in Disperse Media-I, II
,”
Int. J. Heat Mass Transf.
, 35
, pp.
2445
–62
.5.
Furman˜ski
,
P.
,
1997
, “Heat Conduction in Composites:
Homogenization and Macroscopic Behavior
,” Appl.
Mech. Rev.
, 50
, p.
327
327
.6.
Bruggeman
, D. A.
G.
, 1935
,
“Berechnung Verschiedener Physikalischer Konstanten Von
Heterogenen Substanzen
,” Ann. Phys.
(Paris)
, 24
, p.
636
636
.7.
Landauer
,
R.
,
1952
, “The Electrical Resistance of Binary
Metallic Mixtures
,” J. Appl. Phys.
,
23
, p.
779
779
.8.
Kerner
, E.
H.
, 1956
,
“The Electrical Conductivity of Composite
Media
,” Proc. Phys. Soc. B
,
69
, p.
802
802
.9.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “A Variational Approach to the Theory of
the Effective Magnetic Permeability of Multiphase
Materials
,” J. Appl. Phys.
,
33l
, p.
3125
3125
.10.
Hashin
,
Z.
,
1968
, “Assessment of the Self Consistent Scheme
Approximation: Conductivity of Particulate Composites
,”
J. Comp. Mat.
, 2
, pp.
284
–300
.11.
Yang
, Q.
S.
,
Tang
,
L.
, and
Chen
,
H.
,
1994
, “Self-Consistent Finite Element Method: A
New Method of Predicting Effective Properties of Inclusion
Media
,” Finite Elem. Anal. Design
,
17
, pp.
247
–257
.12.
Batchelor
, G.
K.
, 1974
,
“Transport Properties of Two-Phase Materials With Random
Structure
,” Annu. Rev. Fluid Mech.
,
6
, p.
227
227
.13.
Miloh
,
T.
, and
Benveniste
,
Y.
,
1988
, “A Generalized Self-Consistent Method for
the Effective Conductivity of Composites With Ellipsoidal Inclusions and
Cracked Body
,” J. Appl. Phys.
,
63
, pp.
789
–796
.14.
Landauer, R., 1978, “Electrical Conductivity in Inhomogeneous
Media,” Electrical, Transport and Optical Properties of Inhomogeneous
Media, Garland & Tanner, eds., American Institute of Physics,
New York, Vol. 99.
15.
Clerc
, J.
P.
, et al.,
1983
, “La Percolation: Mode`les, Simulations
Analogiques et Nume´riques
,” Ann. Phys.
,
8
, pp.
1
–108
.16.
Banhegyi
,
G.
,
1986
, “Comparison of Electrical Mixture Rules
for Composites
,” Colloid Polym. Sci.
,
264
, pp.
1030
–1050
.17.
Hatta
,
H.
, and
Taya
,
M.
,
1985
, “Effective Thermal Conductivity of
Misoriented Short Fiber Composite
,” J. Appl.
Phys.
, 58
, pp.
2478
–2486
.18.
Polder
,
D.
, and
Van Santen
, J.
H.
, 1946
,
“The Effective Permeability of Mixtures of
Solids
,” Physica XII
, 5
,
p. 257
257
. Copyright © 2000
by ASME
You do not currently have access to this content.