This lecture reviews a relatively recent body of heat transfer work that bases on a deterministic (constructal) principle the occurrence of geometric form in systems with internal flows. The same principle of global optimization subject to constraints allow us to anticipate the natural (animate and inanimate) flow architectures that surround us. The lecture starts with the example of the optimal spatial distribution of material (e.g., heat exchanger equipment) in power plants. Similarly, void space can be allocated optimally to construct flow channels in the volume occupied by a heat generating system. The lecture continues with the optimization of the path for heat flow between a volume and one point. It shows that when the heat flow can choose between at least two paths, low conductivity versus high conductivity, the optimal flow structure for minimal global resistance in steady flow is a tree. Nearly the same tree is deduced by minimizing the time of discharge in the flow from a volume to one point. Analogous tree-shaped flows are constructed in pure fluid flows, and in flow through a heterogeneous porous medium. The optimization of trees that combine heat transfer and fluid flow is illustrated by means of two-dimensional trees of plate fins. The method is extended to the superposition of two fluid trees in counterflow, as in vascularized tissues under the skin. The two trees in counterflow are one tree of convective heat currents that effect the loss of body heat. It is shown that the optimized geometry of the tree is responsible for the proportionalities between body heat loss and body size raised to the power 3/4, and between breathing time and body size raised to the power 1/4. The optimized structures are robust with respect to changes in some of the externally specified parameters. When more degrees-of-freedom are allowed, the optimized structure looks more natural. The lecture outlines a unique opportunity for engineers to venture beyond their discipline, and to construct an engineering theory on the origin and workings of naturally organized systems. [S0022-1481(00)02403-8]

1.
Bejan, A., 2000, Shape and Structure, From Engineering to Nature, Cambridge University Press, Cambridge, UK.
2.
Bejan, A., 1997, Advanced Engineering Thermodynamics, Second Ed., John Wiley and Sons, New York.
3.
Bejan
,
A.
,
1988
, “
Theory of Heat Transfer-Irreversible Power Plants
,”
Int. J. Heat Mass Transf.
,
31
, pp.
1211
1219
.
4.
Bejan
,
A.
,
1989
, “
Theory of Heat Transfer-Irreversible Refrigeration Plants
,”
Int. J. Heat Mass Transf.
,
32
, pp.
1631
1639
.
5.
Bejan, A., Tsatsaronis, G., and Moran, M., 1996, Thermal Design and Optimization, John Wiley and Sons, New York.
6.
Moran, M. J., 1982, Availability Analysis: A Guide to Efficient Energy Use, Prentice-Hall, Englewood Cliffs, NJ.
7.
Bejan, A., 1982, Entropy Generation Through Heat and Fluid Flow, John Wiley and Sons, New York.
8.
Bejan, A., 1988, Advanced Engineering Thermodynamics, John Wiley and Sons, New York.
9.
Bejan, A., 1996, Entropy Generation Minimization, CRC Press, Boca Raton, FL.
10.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
J. Appl. Phys.
,
79
, pp.
1191
1218
.
11.
Feidt, M., 1987, Thermodynamique et Optimisation E´nergetique des Syste`mes et Procede´s, Technique et Documentation, Lavoisier, Paris.
12.
Sieniutycz, S., and Salamon, P., eds., 1990, Finite-Time Thermodynamics and Thermoeconomics, Taylor and Francis, New York.
13.
De Vos, A., 1992, Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, Oxford, UK.
14.
Radcenco, V., 1994, Generalized Thermodynamics, Editura Tehnica, Bucharest.
15.
Bejan, A., and Mamut, E., eds., 1999, Thermodynamic Optimization of Complex Energy Systems, Kluwer Academic Publishers, Dordrecht, The Netherlands.
16.
Bejan, A., Vada´sz, P., and Kro¨ger, D. G., 1999, Energy and the Environment, Kluwer Academic Publishers, Dordrecht, The Netherlands.
17.
Schmidt-Nielsen, K., 1964, Desert Animals: Physiological Problems of Heat and Water, Oxford University Press, Oxford, UK.
18.
Schmidt-Nielsen, K., 1972, How Animals Work, Cambridge University Press, Cambridge, UK.
19.
Schmidt-Nielsen, K., 1984, Scaling: Why Is Animal Size So Important?, Cambridge University Press, Cambridge, UK.
20.
Peters, R. H., 1983, The Ecological Implications of Body Size, Cambridge University Press, Cambridge, UK.
21.
Calder, W. A., III, 1984, Size, Function, and Life History, Harvard University Press, Cambridge, MA.
22.
Vogel, S., 1988, Life’s Devices, Princeton University Press, Princeton, NJ.
23.
Kraus, A. D., and Bar-Cohen, A., 1995, Design and Analysis of Heat Sinks, John Wiley and Sons, New York.
24.
Bejan, A., 1995, Convection Heat Transfer, 2nd Ed., John Wiley and Sons, New York.
25.
Kim, S. J., and Lee, S. W., eds., 1996, Air Cooling Technology for Electronic Equipment, CRC Press, Boca Raton, FL.
26.
Sathe
,
S.
, and
Sammakia
,
B.
,
1998
, “
A Review of Recent Developments in Some Practical Aspects of Air-Cooled Electronic Packages
,”
ASME J. Heat Transfer
,
120
, pp.
830
839
.
27.
Bejan, A., 1984, Convection Heat Transfer, John Wiley and Sons, New York, Chapter 4, Problem 11, p. 157.
28.
Bar-Cohen
,
A.
, and
Rohsenow
,
W. M.
,
1984
, “
Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates
,”
ASME J. Heat Transfer
,
106
, pp.
116
123
.
29.
Anand
,
N. K.
,
Kim
,
S. H.
, and
Fletcher
,
L. S.
,
1992
, “
The Effect of Plate Spacing on Free Convection between Heated Parallel Plates
,”
ASME J. Heat Transfer
,
114
, pp.
515
518
.
30.
Bejan
,
A.
,
Fowler
,
A. J.
, and
Stanescu
,
G.
,
1995
, “
The Optimal Spacing Between Horizontal Cylinders in a Fixed Volume Cooled by Natural Convection
,”
Int. J. Heat Mass Transf.
,
38
, pp.
2047
2055
.
31.
Fisher
,
T. S.
, and
Torrance
,
K. E.
,
1998
, “
Free Convection Limits for Pin-Fin Cooling
,”
ASME J. Heat Transfer
,
120
, pp.
633
640
.
32.
Ledezma
,
G. A.
, and
Bejan
,
A.
,
1997
, “
Optimal Geometric Arrangement of Staggered Vertical Plates in Natural Convection
,”
ASME J. Heat Transfer
,
119
, pp.
700
708
.
33.
Bejan
,
A.
, and
Sciubba
,
E.
,
1992
, “
The Optimal Spacing for Parallel Plates Cooled by Forced Convection
,”
Int. J. Heat Mass Transf.
,
35
, pp.
3259
3264
.
34.
Petrescu
,
S.
,
1994
, “
Comments on the Optimal Spacing of Parallel Plates Cooled by Forced Convection
,”
Int. J. Heat Mass Transf.
,
37
, pp.
1283
1283
.
35.
Fowler
,
A. J.
,
Ledezma
,
G. A.
, and
Bejan
,
A.
,
1997
, “
Optimal Geometric Arrangement of Staggered Plates in Forced Convection
,”
Int. J. Heat Mass Transf.
,
40
, pp.
1795
1805
.
36.
Bejan
,
A.
,
1995
, “
The Optimal Spacings for Cylinders in Crossflow Forced Convection
,”
ASME J. Heat Transfer
,
117
, pp.
767
770
.
37.
Stanescu
,
G.
,
Fowler
,
A. J.
, and
Bejan
,
A.
,
1996
, “
The Optimal Spacing of Cylinders in Free-Stream Cross-Flow Forced Convection
,”
Int. J. Heat Mass Transf.
,
39
, pp.
311
317
.
38.
Ledezma
,
G. A.
,
Morega
,
A. M.
, and
Bejan
,
A.
,
1996
, “
Optimal Spacing Between Fins With Impinging Flow
,”
ASME J. Heat Transfer
,
118
, pp.
570
577
.
39.
Heinrich
,
B.
,
1981
, “
The Mechanism and Energetics of Honeybee Swarm Temperature Regulation
,”
J. Exp. Biol.
,
91
, pp.
25
55
.
40.
Basak
,
T.
,
Rao
,
K. K.
, and
Bejan
,
A.
,
1996
, “
A Model for Heat Transfer in a Honey Bee Swarm
,”
Chem. Eng. Sci.
,
51
, pp.
387
400
.
41.
Bejan
,
A.
,
Ikegami
,
Y.
, and
Ledezma
,
G. A.
,
1998
, “
Constructal Theory of Natural Crack Pattern Formation for Fastest Cooling
,”
Int. J. Heat Mass Transf.
,
41
, pp.
1945
1954
.
42.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transf.
,
40
, pp.
799
816
.
43.
Ledezma
,
G.
,
Bejan
,
A.
, and
Errera
,
M. R.
,
1997
, “
Constructal Tree Networks for Heat Transfer
,”
J. Appl. Phys.
,
82
, pp.
89
100
.
44.
Rodriguez-Iturbe, I., and Rinaldo, A., 1997, Fractal River Basins, Cambridge University Press, Cambridge, UK.
45.
Meakin, P., 1998, Fractals, Scaling and Growth Far From Equilibrium, Cambridge University Press, Cambridge, UK.
46.
Cohn
,
D. L.
,
1954
, “
Optimal Systems: I. The Vascular System
,”
Bull. Math. Biophys.
,
16
, pp.
59
74
.
47.
Thompson, D’A., 1942, On Growth and Form, Cambridge University Press, Cambridge, UK.
48.
Mandelbrot, B. B., 1982, The Fractal Geometry of Nature, Freeman, New York.
49.
Almogbel
,
M.
, and
Bejan
,
A.
,
1999
, “
Conduction Trees With Spacings at the Tips
,”
Int. J. Heat Mass Transf.
,
42
, pp.
3739
3756
.
50.
Dan
,
N.
, and
Bejan
,
A.
,
1998
, “
Constructal Tree Networks for the Time-Dependent Discharge of a Finite-Size Volume to One Point
,”
J. Appl. Phys.
,
84
, pp.
3042
3050
.
51.
Neagu
,
M.
, and
Bejan
,
A.
,
1999
, “
Constructal-Theory Tree Networks of ‘Constant’ Thermal Resistance
,”
J. Appl. Phys.
,
86
, pp.
1136
1144
.
52.
Neagu
,
M.
, and
Bejan
,
A.
,
1999
, “
Three-Dimensional Tree Constructs of ‘Constant’ Thermal Resistance
,”
J. Appl. Phys.
,
86
, pp.
7107
7115
.
53.
Nelson
,
R. A.
, and
Bejan
,
A.
,
1998
, “
Constructal Optimization of Internal Flow Geometry in Convection
,”
ASME J. Heat Transfer
,
120
, pp.
357
364
.
54.
Malkus
,
W. V. R.
,
1954
, “
The Heat Transport and Spectrum of Thermal Turbulence
,”
Proc. R. Soc. London, Ser. A
,
225
, pp.
196
212
.
55.
Glansdorff, P., and Prigogine, L., 1971, Thermodynamic Theory of Structure, Stability and Fluctuations, John Wiley and Sons, London.
56.
Avnir
,
D.
,
Biham
,
O.
,
Lidar
,
D.
, and
Malcai
,
O.
,
1998
, “
Is the Geometry of Nature Fractal?
,”
Science
,
279
, pp.
39
40
.
57.
Bejan
,
A.
, and
Tondeur
,
D.
,
1998
, “
Equipartition, Optimal Allocation, and the Constructal Approach to Predicting Organization in Nature
,”
Rev. Gen. Therm.
,
37
, pp.
165
180
.
58.
Nottale, L., 1993, Fractal Space-Time and Microphysics, World Scientific, Singapore.
59.
Errera
,
M. R.
, and
Bejan
,
A.
,
1998
, “
Deterministic Tree Networks for River Drainage Basins
,”
Fractals
,
6
, pp.
245
261
.
60.
Bejan
,
A.
, and
Errera
,
M. R.
,
2000
, “
Convective Trees of Fluid Channels for Volumetric Cooling
,”
Int. J. Heat Mass Transf.
,
43
, pp.
3105
3118
.
61.
Hamburgen, W. R., 1986, “Optimal Finned Heat Sinks,” WRL Research Report 86/4, Digital, Western Research Laboratory, Palo Alto, CA.
62.
Kraus
,
A. D.
,
1999
, “
Developments in the Analysis of Finned Arrays
,”
Int. J. Transp. Phenom.
,
1
, pp.
141
164
.
63.
Gardner
,
K. A.
,
1945
, “
Efficiency of Extended Surfaces
,”
Trans. ASME
,
67
, pp.
621
631
.
64.
Bejan
,
A.
, and
Dan
,
N.
,
1999
, “
Constructal Trees of Convective Fins
,”
ASME J. Heat Transfer
,
121
,
675
682
.
65.
Bejan
,
A.
, and
Almogbel
,
M.
,
2000
, “
Constructal T-Shaped Fins
,”
Int. J. Heat Mass Transf.
,
43
, pp.
2101
2115
.
66.
Alebrahim
,
A.
, and
Bejan
,
A.
,
1999
, “
Constructal Trees of Circular Fins for Conductive and Convective Heat Transfer
,”
Int. J. Heat Mass Transf.
,
42
, pp.
3585
3597
.
67.
Lin
,
W. W.
, and
Lee
,
D. J.
,
1997
, “
Diffusion-Convection Process in a Branching Fin
,”
Chem. Eng. Commun.
,
158
, pp.
59
70
.
68.
Lee
,
D. J.
, and
Lin
,
W. W.
,
1995
, “
Second-Law Analysis on a Fractal-Like Fin Under Crossflow
,”
AIChE J.
,
41
, pp.
2314
2317
.
69.
Lin
,
W. W.
, and
Lee
,
D. J.
,
1997
, “
Second-Law Analysis on a Pin-Fin Array Under Cross-Flow
,”
Int. J. Heat Mass Transf.
,
40
, pp.
1937
1945
.
70.
Bejan
,
A.
,
1997
, “
Constructal Tree Network for Fluid Flow Between a Finite-Size Volume and One Source or Sink
,”
Rev. Gen. Therm.
,
36
, pp.
592
604
.
71.
Bejan
,
A.
, and
Errera
,
M. R.
,
1997
, “
Deterministic Tree Networks for Fluid Flow: Geometry for Minimal Flow Resistance between a Volume and One Point
,”
Fractals
,
5
, pp.
685
695
.
72.
Errera
,
M. R.
, and
Bejan
,
A.
,
1999
, “
Tree Networks for Flows in Porous Media
,”
J. Porous Media
,
2
, pp.
1
18
.
73.
Weibel, E. R., 1963, Morphometry of the Human Lung, Academic Press, New York.
74.
Nonnenmacher, T. F., Losa, G. A., and Weibel, E. R., eds., 1994, Fractals in Biology and Medicine, Birkha¨user Verlag, Basel, Switzerland.
75.
MacDonald, N., 1983, Trees and Networks in Biological Models, Wiley, Chichester, UK.
76.
Bloom, A. L., 1978, Geomorphology, Prentice-Hall, Englewood Cliffs, NJ.
77.
Leopold, L. B., Wolman, M. G., and Miller, J. P., 1964, Fluvial Processes in Geomorphology, W. H. Freeman, San Francisco, CA.
78.
Scheiddeger, A. E., 1970, Theoretical Geomorphology, 2nd Ed., Springer-Verlag, Berlin.
79.
Chorley, R. J., Schumm, S. A., and Sugden, D. E., 1984, Geomorphology, Methuen, London.
80.
Morisawa, M., 1985, Rivers: Form and Process, Longman, London.
81.
Bejan, A., 2000, “The Tree of Convective Heat Streams: Its Thermal Insulation Function and the Predicted 3/4-Power Relation between Body Heat Loss and Body Size,” Int. J. Heat Mass Transf., 43, to appear.
82.
Weinbaum
,
S.
, and
Jiji
,
L. M.
,
1985
, “
A New Simplified Bioheat Equation for the Effect of Blood Flow on Local Average Tissue Temperature
,”
ASME J. Biomech. Eng.
,
107
, pp.
131
139
.
83.
Huang
,
H. W.
,
Chen
,
Z. P.
, and
Roemer
,
R. B.
,
1996
, “
A Counter Current Vascular Network Model of Heat Transfer in Tissues
,”
ASME J. Biomech. Eng.
,
118
,
120
129
.
84.
Bejan
,
A.
,
1979
, “
A General Variational Principle for Thermal Insulation System Design
,”
Int. J. Heat Mass Transf.
,
22
, pp.
219
228
.
85.
Bejan
,
A.
,
1997
, “
Theory of Organization in Nature: Pulsating Physiological Processes
,”
Int. J. Heat Mass Transf.
,
40
, pp.
2097
2104
.
86.
Hildebrandt, S., and Tromba, A., 1985, Mathematics and Optimal Form, Scientific American Books, New York.
You do not currently have access to this content.