This paper reports results from an experimental study of boiling heat transfer during quenching of a cylindrical copper disk by a subcooled, circular, free-surface water jet. The disk was heated to approximately 650°C, and as quenching occurred, transient temperature measurements were taken at discrete locations near the surface and applied as boundary conditions in a conduction model to deduce transient heat flux distributions at the surface. Results are presented in the form of heat flux distributions and boiling curves for radial locations varying from the stagnation point to ten nozzle diameters for jet velocities between 2.0 and 4.0 m/s 11,300Red22,600. Data for nucleate boiling in the stagnation region and spatial distributions of maximum heat flux are presented and are in good agreement with correlations developed from steady-state experiments. Spatial distributions of minimum film boiling temperatures and heat fluxes are also reported and reveal a fundamental dependence on jet deflection and streamwise location. A companion paper (Hall et al., 2001) describes single-phase and boiling heat transfer measurements from a two-phase (water-air), free-surface, circular jet produced by injecting air bubbles into the jet upstream of the nozzle exit.

1.
Viskanta, R., and Incropera, F. P., 1992, “Quenching with Liquid Jet Impingement,” Heat and Mass Transfer in Materials Processing, Hemisphere, I. Tanasawa and N. Lior, eds., New York, pp. 455–476.
2.
Wolf, D. H., Incropera, F. P., and Viskanta, R., 1993, “Jet Impingement Boiling,” Advances in Heat Transfer, J. P. Hartnett, T. F. Irvine, and Y. I. Cho, eds., Academic Press, Inc., Boston, 23, pp. 1–132.
3.
Vader
,
D. T.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1992
, “
Convective Nucleate Boiling on a Heated Surface Cooled by an Impinging, Planar Jet of Water
,”
ASME J. Heat Transfer
,
114
, pp.
152
160
.
4.
Wolf
,
D. H.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1996
, “
Local Jet Impingement Boiling Heat Transfer
,”
Int. J. Heat Mass Transf.
,
39
, pp.
1395
1406
.
5.
Kumagai, S., Suzuki, S., Sano, Y., and Kawazoe, M., 1995, “Transient Cooling on a Hot Metal Slab by an Impinging Jet with Boiling Heat Transfer,” L. S. Fletcher and T. Aiahara, eds., Proceedings, ASME/JSME Thermal Engineering Joint Conference, Vol. 2, ASME, New York, pp. 347–352.
6.
Filipovic
,
J.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1995
, “
Quenching Phenomena Associated with a Water Wall Jet: I. Transient Hydrodynamic and Thermal Conditions
,”
Experimental Heat Transfer
,
8
, pp.
97
117
.
7.
Filipovic
,
J.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1995
, “
Quenching Phenomena Associated with a Water Wall Jet: II. Comparison of Experimental and Theoretical Results for the Film Boiling Region
,”
Exp. Heat Transfer
,
8
, pp.
119
130
.
8.
Ishigai, S., Nakanishi, S., and Ochi, T., 1978, “Boiling Heat Transfer for a Plane Water Jet Impinging on a Hot Surface,” Proceedings, 6th International Heat Transfer Conference, Vol. 1, Hemisphere, Washington, pp. 445–450.
9.
Ochi, T., Nakanishi, S., Kaji, M., and Ishigai, S., 1983, “Cooling of a Hot Plate with an Impinging Circular Water Jet,” Proceedings, Multi-Phase Flow and Heat Transfer III, T. N. Veziroglu and A. E. Bergles, eds., Elsevier, Amsterdam, pp. 671–681.
10.
Hatta
,
N.
,
Kokado
,
J.-I.
, and
Hanasaki
,
K.
,
1983
, “
Numerical Analysis of Cooling Characteristics for Water Bar
,”
Trans. Iron Steel Inst. Jpn.
,
23
, pp.
555
564
.
11.
Filipovic
,
J.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1995
, “
Rewetting Temperatures and Velocity in a Quenching Experiment
,”
Exp. Heat Transfer
,
8
, pp.
257
270
.
12.
Hall
,
D. E.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
2001
, “
Jet Impingement Boiling From a Circular Free-Surface Jet During Quenching: II—Two-Phase Jet
,”
ASME J. Heat Transfer
,
123
, pp.
911
917
.
13.
El-Genk
,
M. S.
, and
Glebov
,
A.
,
1995
, “
Numerical Solution of Transient Heat Conduction in a Cylindrical Section During Quenching
,”
Numer. Heat Transfer, Part A
,
28
, pp.
547
574
.
14.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York.
15.
Beck, J. V., Blackwell, B., and St. Clair, C. R., 1985, Inverse Heat Conduction, John Wiley & Sons, New York.
16.
Chapra, S. C., and Canale, R. P., 1988, Numerical Methods for Engineers, 2nd ed., McGraw-Hill, New York.
17.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.
18.
Coleman, H. W., and Steele, W. G., 1989, Experimental and Uncertainty Analysis for Engineers, John Wiley & Sons, New York.
19.
Piggott
,
B. D. G.
,
White
,
E. P.
, and
Duffey
,
R. B.
,
1976
, “
Wetting Delay Due to Film and Transition Boiling on Hot Surfaces
,”
Nucl. Eng. Des.
,
36
, pp.
169
181
.
20.
Shibayama
,
S.
,
Katsuta
,
M.
,
Suzuki
,
K.
,
Kurose
,
T.
, and
Hatano
,
Y.
,
1979
, “
A Study on Boiling Heat Transfer in a Thin Liquid Film (Part 1: In the Case of Pure Water and an Aqueous Solution of a Surface Active-Agent as the Working Liquid)
,”
Heat Transfer—Jpn. Res.
,
8
, pp.
12
40
.
21.
Nonn, T., Dagan, Z., and Jiji, L. M., 1988, “Boiling Jet Impingement Cooling of Simulated Microelectronic Heat Sources,” ASME Paper No. 88-WA/EEP-3.
22.
Katsuta
,
M.
, and
Kurose
,
T.
,
1981
, “
A Study on Boiling Heat Transfer in Thin Liquid Film (2nd Report, the Critical Heat Flux of Nucleate Boiling)
,”
Transactions of JSME
,
47B
, pp.
1849
1860
.
23.
Ma. C.-F., Yu, J., Lei, D. H., Gan, Y. P., Auracher, H., and Tsou, F. K., 1989,“Jet Impingement Transient Boiling Heat Transfer on Hot Surfaces,” Proceedings, Multiphase Flow and Heat Transfer Second International Symposium, Vol. 1, X.-J. Chen, T. N. Veziroglu and C. L. Tien, eds., Hemisphere, New York, pp. 349–357.
24.
Monde
,
M.
,
1985
, “
Critical Heat Flux in Saturated Forced Convective Boiling on a Heated Disk with an Impinging Jet
,”
Wa¨erme- und Stroffu¨ebertrag
,
19
, pp.
205
209
.
25.
Sharan
,
A.
, and
Lienhard
,
J. H.
,
1985
, “
On Predicting Burnout in the Jet-Disk Configuration
,”
ASME J. Heat Transfer
,
107
, pp.
398
401
.
26.
Cho, C. S. K., and Wu. K., 1988, “Comparison of Burnout Characteristics in Jet Impingement Cooling and Spray Cooling,” Proceedings, 1988 National Heat Transfer Conference, Vol. 1, H. R. Jacobs, ed., ASME, New York, pp. 561–567.
27.
Katto
,
Y.
, and
Yokoya
,
S.
,
1988
, “
Critical Heat Flux on a Disk Heater Cooled by a Circular Jet of Saturated Liquid Impinging at the Center
,”
Int. J. Heat Mass Transf.
,
31
, pp.
219
227
.
28.
Kandula
,
M.
,
1990
, “
Mechanisms and Predictions of Burnout in Flow Boiling Over Heated Surfaces with an Impinging Jet
,”
Int. J. Heat Mass Transf.
,
33
, pp.
1795
1803
.
29.
Skema, R. K., and Slanciauskas, A. A., 1990, “Critical Heat Fluxes as Jet-Cooled Flat Surfaces,” Heat Transfer in Electronic and Microelectronic Equipment, A. E. Bergles, ed., Hemisphere, New York, pp. 621–626.
30.
Monde
,
M.
,
1980
, “
Burnout Heat Flux in Saturated Forced Convection Boiling with an Impinging Jet
,”
Heat Transfer–Jpn. Res.
,
9
, pp.
31
41
.
31.
Carbajo
,
J. J.
,
1985
, “
A Study on the Rewetting Temperature
,”
Nucl. Eng. Des.
,
84
, pp.
21
52
.
You do not currently have access to this content.