For turbulent flows in ducts, streamwise heat conduction effects within the flow can be important for low Prandtl number fluids (liquid metals). The paper presents a numerical investigation of the influence of axial heat conduction within the flow on the heat transfer for hydrodynamically fully developed flow. The calculations have been carried out for a semi-infinite heated section as well as for a heated section of finite length. Additionally, by considering different models for calculating the turbulent heat flux, the normally used assumption that the eddy diffusivity in axial and normal direction are the same was investigated.

1.
Batchelor
,
G. K.
,
1949
, “
Diffusion in a Field of Homogeneous Turbulence
,”
Austral. J. Sci. Res.
,
A2
, pp.
437
450
.
2.
Chieng
,
C. C.
, and
Launder
,
B. E.
,
1980
, “
On the Calculation of Turbulent Heat Transfer Downstream From an Abrupt Pipe Expansion
,”
Numer. Heat Transfer
,
3
, pp.
189
207
.
3.
Faggiani
,
S.
, and
Gori
,
F.
,
1980
, “
Influence of Streamwise Molecular Heat Conduction on the Heat Transfer for Liquid Metals in Turbulent Flow Between Parallel Plates
,”
ASME J. Heat Transfer
,
102
, pp.
292
296
.
4.
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1993
, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,”
J. Fluid Mech.
,
254
, pp.
59
78
.
5.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1976
, “
On the Calculation of Horizontal Turbulent Free Shear Flows Under Gravitational Influence
,”
ASME J. Heat Transfer
,
98
, pp.
81
97
.
6.
Graetz
,
L.
,
1883
, “
Uber die Wa¨rmeleitungsfa¨higkeit von Flu¨ssigkeiten,”
Ann. Phys. Chem.
,
1
(
18
), pp.
79
94
.
7.
Graetz
,
L.
,
1885
, “
U¨ber die Wa¨rmeleitfa¨higkeit von Flu¨ssigkeiten
,”
Ann. Phys. Chem
,
2
(
25
), pp.
337
357
.
8.
Hennecke
,
D. K.
,
1968
, “
Heat Transfer by Hagen-Poiseuille Flow in the Thermal Development Region With Axial Conduction
,”
Waerme-und Stoffuebertrag.
,
1
, pp.
177
184
.
9.
Kader
,
B. A.
,
1981
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transf.
,
24
(
9
), pp.
1541
1544
.
10.
Kays, W. M., and Crawford, M. E., 1993, Convective Heat and Mass Transfer, Mc Graw-Hill, New York.
11.
Kim, J., and Moin, P., 1989, “Transport of Passive Scalars in Turbulent Channel Flow,” in Turbulent Shear Flows, 6, Springer-Verlag, Berlin, pp. 85–96.
12.
Lee
,
S. L.
,
1982
, “
Forced Convection Heat Transfer in Low Prandtl Number Turbulent Flows: Influence of Axial Conduction
,”
Can. J. Chem. Eng.
,
60
, pp.
482
486
.
13.
Nguyen
,
T. V.
,
1992
, “
Laminar Heat Transfer for Thermally Developing Flow in Ducts
,”
Int. J. Heat Mass Transf.
,
35
(
7
), pp.
1733
1741
.
14.
Nusselt
,
W.
,
1910
, “
Die Abha¨ngigkeit der Wa¨rmeu¨bergangszahl von der Rohrla¨nge
,”
VDI Zeitschrift
,
54
, pp.
1154
1158
.
15.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in Fortran77, 1, 2nd ed., Cambridge University Press.
16.
Reed, C. B., 1987, “Convective Heat Transfer in Liquid Metals,” in S. Kakac, R. K. Shah, and W. Aung, eds., Handbook of Single-Phase Convective Heat Transfer, Wiley, New York, Chap 8.
17.
Shah, R. K., and London, A. L., 1978, Laminar Flow Forced Convection in Ducts, Academic Press, New York, Chap. V and VI.
18.
So
,
R. M. C.
, and
Sommer
,
T. P.
,
1996
, “
An Explicit Algebraic Heat-Flux Model for the Temperature Field
,”
Int. J. Heat Mass Transf.
,
39
(
3
), pp.
455
465
.
19.
Sommer, T. P., 1994, “Near-Wall Modeling of Turbulent Heat Transport in Non-Buoyant and Buoyant Flows,” Ph.D. thesis, Arizona State University, Tempe, AZ.
20.
Weigand
,
B.
,
1996
, “
An Exact Analytical Solution for the Extended Turbulent Graetz Problem With Dirichlet Wall Boundary Conditions for Pipe and Channel Flows
,”
Int. J. Heat Mass Transf.
,
39
(
8
), pp.
1625
1637
.
21.
Weigand, B., 1997, Ausgewa¨hlte analytische Lo¨sungsmethoden fu¨r komplexe, knovektive Wa¨rmeu¨bertragungsprobleme, Dr. Ha¨nsel-Hohenhausen Verlag der Deutschen Hochschulschriften, ISBN3-8267-2624-3.
22.
Weigand
,
B.
,
Ferguson
,
J. R.
, and
Crawford
,
M. E.
,
1997
, “
An Extended Kays and Crawford Turbulent Prandtl Number Model
,”
Int. J. Heat Mass Transf.
,
40
(
17
), pp.
4191
4196
.
23.
Weigand
,
B.
,
Kanzamar
,
M.
, and
Beer
,
H.
,
2000
, “
The Extended Graetz Problem With Piecewise Constant Wall Heat Flux for Pipe and Channel Flows
,”
Int. J. Heat Mass Transf.
.
24.
Younis, B. A., Speziale, C. G., and Clark, T. T., 1996, “A Non-Linear Algebraic Model for the Turbulent Scalar Flux,” International Conference on Turbulent Heat Transfer, March 1996.
You do not currently have access to this content.