A numerical investigation has been conducted of flow transitions in deep three-dimensional cavities heated from below. The first critical Rayleigh number, RaI, below which the flow is at rest, and the second critical Rayleigh number, RaII, for transition from steady state to oscillatory flow, have been found for cavities of aspect ratios Ar in the range 1–5. Transition to chaos has also been examined for these cases. The results show that RaI=3583,2.545×104 and 5.5×105 and RaII=4.07×105,1.65×106 and 1.30×107 for aspect ratios of 1, 2, and 5 respectively. The route to chaos is PPeriodicQP2(Quasi-periodic with two incommensurate frequencies)→QP3(Quasi-periodic with three incommensurate frequencies)→NChaotic for Ar=1 with the Rayleigh number varying from 4.07×105 to 4.89×105. The route is PPeriodicP2(Periodic doubling)→I(Intermittent)→P(Periodic)→N(Chaotic) for Ar=2 over a Ra range of 1.65×106 to 1.83×106. The interval between periodic and chaotic flow is very short for Ar=5.

1.
Griffiths, S. K., Nilson, R. H., et al., 1998, “Transport Limitations in Electrodeposition for LIGA Microdevice Fabrication,” SPIE Conference on Micromachining and Microfabrication Process Technology IV, Santa Clara, California.
2.
Hakin, H., 1984, “Instability Hierarchies of Self Organizing Systems and Devices,” in Advanced Synergetics, Springer-Verlag, Berlin.
3.
Grassberger
,
P.
, and
Procaccia
,
I.
,
1983
, “
Characterization of Strange Attractors
,”
Phys. Rev. Lett.
,
50
, pp.
346
349
.
4.
Davis
,
S.
,
1967
, “
Convection in a Box: Linear Theory
,”
J. Fluid Mech.
,
30
(
3
), pp.
465
478
.
5.
Stork
,
K.
, and
Muller
,
U.
,
1972
, “
Convection in a Box: Experiments
,”
J. Fluid Mech.
,
54
(
4
), pp.
599
611
.
6.
Yang
,
K. T.
,
1988
, “
Transitions and Bifurcations in Laminar Buoyant Flows in Confined Enclosures
,”
ASME J. Heat Transfer
,
110
, pp.
1191
1204
.
7.
Gollub
,
J. P.
, and
Benson
,
S. V.
,
1980
, “
Many Routes to Turbulent Convection
,”
J. Fluid Mech.
,
100
, Part 3, pp.
449
470
.
8.
Stella
,
F.
, and
Bucchignani
,
E.
,
1999
, “
Rayleigh-Benard Convection in Limited Domains: Part 1—Oscillatory Flow
,”
Numer. Heat Transfer
,
36
, pp.
1
16
.
9.
Mukutmoni
,
D.
, and
Yang
,
K. T.
,
1993
, “
Rayleigh-Benard Convection in a Small Aspect Ratio Enclosure: Part 1—Bifurcation to Oscillatory Convection
,”
ASME J. Heat Transfer
,
115
, pp.
360
366
.
10.
Stella
,
F.
, and
Bucchignani
,
E.
,
1999
, “
Rayleigh-Benard Convection in Limited Domains: Part 2—Transition to Chaos
,”
Numer. Heat Transfer
,
36
, pp.
17
34
.
11.
Mukutmoni
,
D.
, and
Yang
,
K. T.
,
1993
, “
Rayleigh-Benard Convection in a Small Aspect Ratio Enclosure: Part 1—Bifurcation to Chaos
,”
ASME J. Heat Transfer
,
115
, pp.
367
376
.
12.
Ruelle
,
D.
,
Takens
,
F.
, and
Newhouse
,
S. E.
,
1978
, “
Occurrence of Strange Axiom A Attractors Near Quasi Periodic Flows on Tm, m⩾3,
Commun. Math. Phys.
,
64
, pp.
35
40
.
13.
Feigenbaum
,
M. J.
,
1979
, “
The Onset Spectrum of Turbulence
,”
Phys. Lett.
,
A74
, pp.
375
378
.
14.
Pomeau
,
Y.
, and
Manneville
,
P.
,
1980
, “
Intermittent Transition to Turbulence in Dissipative Dynamic Systems
,”
Commun. Math. Phys.
,
74
, pp.
189
197
.
15.
Leong
,
W. H.
,
Hollands
,
K. G. T.
, and
Brunger
,
A. P.
,
1998
, “
On a Physically Realizable Benchmark Problem in Internal Natural Convection
,”
Int. J. Heat Mass Transf.
,
41
(
23
), pp.
3817
3828
.
16.
Leong
,
W. H.
,
Hollands
,
K. G. T.
, and
Brunger
,
A. P.
,
1999
, “
Experimental Nusselt Numbers for a Cubical-Cavity Benchmark Problem in Natural Convection
,”
Int. J. Heat Mass Transf.
,
42
, pp.
1979
1989
.
17.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
,
1997
, “
A Pressure-Based Method for Unstructured Meshes
,”
Numer. Heat Transfer
,
31
, pp.
195
216
.
18.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York.
You do not currently have access to this content.