In the present study the optimum dimensions of circular rectangular and triangular profile fins with fin-to-fin and fin-to-base radiant interaction are determined. The basic assumptions are one-dimensional heat conduction and black surface radiation. The governing equations are formulated by means of dimensionless variables and solved numerically. The optimum fin dimensions, bore thickness and height, are presented in generalized dimensionless form and explicit correlations are provided for the dimensionless optimum parameters. The results are analyzed and reported in diagrams that give insight to the operational characteristics of the heat rejection mechanism.

1.
Sparrow
,
E. M.
,
Miller
,
G. B.
, and
Jonsson
,
V. K.
,
1962
, “
Radiating Effectiveness of Annular-Finned Space Radiators, with Mutual Irradiation Between Radiator Elements
,”
ASCE, J. Aerosp. Eng.
,
29
, pp.
1291
1299
.
2.
Chung
,
B. T. F.
, and
Zhang
,
B. X.
,
1991
, “
Minimum Mass Longitudinal Fins With Radiation Interaction at the Base
,”
J. Franklin Inst.
,
328
(
1
), pp.
143
161
.
3.
Chung
,
B. T. F.
, and
Zhang
,
B. X.
,
1991
, “
Optimization of Radiating Fin Array Including Mutual Irradiations Between Radiator Elements
,”
ASME J. Heat Transfer
,
113
, pp.
814
822
.
4.
Krishnaprakas
,
C. K.
,
1997
, “
Optimum Design of Radiating Longitudinal Fin Array Extending From a Cylindrical Surface
,”
ASME J. Heat Transfer
,
119
, pp.
857
860
.
5.
Schnurr
,
E. M.
, and
Cothran
,
C. A.
,
1974
, “
Radiation from an Array of Gray Circular Fins of Trapezoidal Profile
,”
AIAA J.
,
12
(
11
), pp.
1476
1480
.
6.
Schnurr
,
E. M.
,
Shapiro
,
A. B.
, and
Townsend
,
M. A.
,
1976
, “
Optimization of Radiating Fin Arrays With Respect to Weight
,”
ASME J. Heat Transfer
,
98
, pp.
643
648
.
7.
Razelos
,
P.
, and
Georgiou
,
E.
,
1992
, “
Two-Dimensional Effects and Design Criteria for Convective Extended Surfaces
,”
Heat Transfer Eng.
,
13
(
3
), pp.
38
48
.
8.
Razelos
,
P.
, and
Imre
,
K.
,
1980
, “
The Optimum Dimensions of Circular Fins With Variable Thermal Parameters
,”
ASME J. Heat Transfer
,
102
(
2
), pp.
420
425
.
9.
Schittkowski, K., 1986, “NLPQL: A FORTRAN Subroutine Solving Constrained Nonlinear Programming Problems,” Annals of Operations Research, Clyde L. Monma, ed., 5, pp. 485–500.
10.
Razelos
,
P.
,
1979
, “
The Optimization of Convective Fins With Internal Heat Generation
,”
Nucl. Eng. Des.
,
52
(
2
), pp.
289
299
.
11.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw-Hill, New York.
12.
Razelos
,
P.
, and
Krikkis
,
R. N.
,
2001
, “
Optimum Design of Longitudinal Rectangular Fins with Base to Fin Radiant Interaction
,”
Heat Transfer Eng.
,
22
(
3
), pp.
3
17
.
13.
Ascher, U. M., Mattheij, R. M. M., and Russel, R. D., 1995, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, 2nd ed., SIAM, Philadelphia, PA.
14.
Keller, H. B., 1992, Numerical Methods for Two-Point Boundary-Value Problems, Dover, New York.
15.
Hairer, E., Nørsett, S. P., and G., Wanner, 1987, Solving Ordinary Differential Equations I. Nonstiff Problems, Springer-Verlag, New York.
16.
Sparrow
,
E. M.
,
1963
, “
A New and Simpler Formulation for Radiative Angle Factors
,”
ASME J. Heat Transfer
,
85
, pp.
81
88
.
You do not currently have access to this content.