The initial conditions of Madejski’s splat-quench solidification model for the impact of molten droplets on a solid substrate surface are modified by eliminating the adjustable parameter “ε” used in the estimation of initial spreading droplet radius. In the present model, the initial conditions are estimated after a definite time interval from the start of impact. Numerical predictions obtained from an improved Madejski model with different ε and the corresponding experimental measurements published in the literature are used for the comparison of the present model predictions. The improvements noted from the model predictions are reported.

1.
Pawlowski, L., 1995, The Science and Engineering of Thermal Spray Coatings, Wiley, New York.
2.
Mostaghimi
,
J.
,
Pasandideh-Fard
,
M.
, and
Chandra
,
S.
,
2002
, “
Dynamics of Splat Formation in Plasma Spray Coating Process
,”
Plasma Chem. Plasma Process.
,
22
, pp.
59
84
.
3.
Chandra
,
S.
, and
Avedisian
,
C. T.
,
1991
, “
On the Collision of a Droplet With a Solid Surface
,”
Proc. R. Soc. London, Ser. A
,
432
, pp.
13
41
.
4.
Fukai
,
J.
,
Shiiba
,
Y.
,
Yamomoto
,
T.
,
Poulikakos
,
D.
,
Megaridis
,
C. M.
, and
Zhao
,
Z.
,
1995
, “
Wetting Effects on the Spreading of a Liquid Droplet Colliding With a Flat Surface: Experiment and Modeling
,”
Phys. Fluids
,
7
, pp.
236
247
.
5.
Bussmann
,
M.
,
Mostaghimi
,
J.
, and
Chandra
,
S.
,
1999
, “
On a Three-Dimensional Volume Tracking Model of Droplet Impact
,”
Phys. Fluids
,
11
, pp.
1406
1417
.
6.
Rioboo
,
R.
,
Marengo
,
M.
, and
Tropea
,
C.
,
2002
, “
Time Evolution of Liquid Drop Impact Onto Solid, Dry Surfaces
,”
Exp. Fluids
,
33
, pp.
112
124
.
7.
Roisman
,
I. V.
,
Romain
,
R.
, and
Tropea
,
C.
,
2002
, “
Normal Impact of a Liquid Drop on a Dry Surface: Model for Spreading and Receding
,”
Proc. R. Soc. London, Ser. A
,
458
, pp.
1411
1430
.
8.
Pasandideh-Fard
,
M.
,
Chandra
,
S.
,
Bhola
,
R.
, and
Mostaghimi
,
J.
,
1998
, “
Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments
,”
Int. J. Heat Mass Transfer
,
41
, pp.
2929
2945
.
9.
Amon
,
C. H.
,
Schmaltz
,
K. S.
,
Merz
,
R.
, and
Prinz
,
F. B.
,
1996
, “
Numerical and Experimental Investigation of Interface Bonding Via Substrate Remelting of an Impinging Molten Metal Droplet
,”
ASME J. Heat Transfer
,
118
, pp.
164
172
.
10.
Zarzalejo
,
L. J.
,
Schmaltz
,
K. S.
, and
Amon
,
C. H.
,
1999
, “
Molten Droplet Solidification and Substrate Remelting in Microcasting Part I: Numerical Modeling and Experimental Verification
,”
Heat Mass Transfer
,
34
, pp.
477
485
.
11.
Schmaltz
,
K. S.
,
Zarzalejo
,
L. J.
, and
Amon
,
C. H.
,
1999
, “
Molten Droplet Solidification and Substrate Remelting in Microcasting Part II: Parametric Study and Effect of Dissimilar Materials
,”
Heat Mass Transfer
,
35
, pp.
17
23
.
12.
Pasandideh-Fard
,
M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2002
, “
A Three-Dimensional Model of Droplet Impact and Solidification
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2229
2242
.
13.
Madejski
,
J.
,
1976
, “
Solidification of Droplets on a Cold Surface
,”
Int. J. Heat Mass Transfer
,
19
, pp.
1009
1013
.
14.
Markworth
,
A. J.
, and
Saunders
,
J. H.
,
1992
, “
An Improved Velocity Field for the Madejski Splat-Quench Solidification Model
,”
Int. J. Heat Mass Transfer
,
35
, pp.
1836
1837
.
15.
Delplanque
,
J. P.
, and
Rangel
,
R. H.
,
1997
, “
An Improved Model for Droplet Solidification on a Flat Surface
,”
J. Mater. Sci.
,
32
, pp.
1519
1530
.
16.
Delplanque
,
J. P.
, and
Rangel
,
R. H.
,
1998
, “
A Comparison of Models, Numerical Simulation, and Experimental Results in Droplet Deposition Processes
,”
Acta Mater.
,
46
, pp.
4925
4933
.
17.
Zhang
,
H.
,
1999
, “
Theoretical Analysis of Spreading and Solidification of Molten Droplet During Thermal Spray Deposition
,”
Int. J. Heat Mass Transfer
,
42
, pp.
2499
2508
.
18.
Wan
,
Y. P.
,
Zhang
,
H.
,
Jiang
,
X. Y.
,
Sampath
,
S.
, and
Prasad
,
V.
,
2001
, “
Role of Solidification, Substrate Temperature and Reynolds Number on Droplet Spreading in Thermal Spray Deposition: Measurements and Modeling
,”
ASME J. Heat Transfer
,
123
, pp.
382
389
.
19.
Haller
,
K. K.
,
Ventikos
,
Y.
,
Poulikakos
,
D.
, and
Monkewitz
,
P.
,
2002
, “
A Computational Study High Speed Liquid Droplet Impact
,”
J. Appl. Phys.
,
92
, pp.
2821
2828
.
20.
Haller
,
K. K.
,
Ventikos
,
Y.
, and
Poulikakos
,
D.
,
2003
, “
Wave Structure in the Contact Line Region During High Speed Droplet Impact on a Surface: Solution of the Riemann Problem for the Stiffened Gas Equation of State
,”
J. Appl. Phys.
,
93
, pp.
3090
3097
.
21.
Haller
,
K. K.
,
Ventikos
,
Y.
,
Poulikakos
,
D.
, and
Monkewitz
,
P.
,
2003
, “
Shock Wave Formation in Droplet Impact on a Rigid Surface: Lateral Liquid Motion and Multiple Wave Structure in the Contact Line Region
,”
J. Fluid Mech.
,
490
, pp.
1
14
.
22.
Schiaffino
,
S.
, and
Sonin
,
A. A.
,
1997
, “
Motion and Arrest of a Molten Contact Line on a Cold Surface: An Experimental Study
,”
Phys. Fluids
,
9
, pp.
2217
2226
.
23.
Aziz
,
S. D.
, and
Chandra
,
S.
,
2000
, “
Impact, Recoil and Splashing of Molten Metal Droplets
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2841
2857
.
24.
Rangel
,
R. H.
, and
Bian
,
X.
,
1996
, “
The Inviscid Stagnation-Flow Solidification Problem
,”
Int. J. Heat Mass Transfer
,
39
, pp.
1591
1602
.
25.
Zhao
,
Z.
,
Poulikakos
,
D.
, and
Fukai
,
J.
,
1996
, “
Heat Transfer and Fluid Dynamics During the Collision of a Droplet on a Substrate: II—Experiments
,”
Int. J. Heat Mass Transfer
,
39
, pp.
2791
2802
.
26.
Attinger
,
D.
,
Zhao
,
Z.
, and
Poulikakos
,
D.
,
2000
, “
An Experimental Study of Molten Microdroplet Surface Deposition and Solidification: Transient Behavior and Wetting Angle Dynamics
,”
ASME J. Heat Transfer
,
122
, pp.
544
556
.
You do not currently have access to this content.