The semiconductor community is developing three-dimensional circuits that integrate logic, memory, optoelectronic and radio-frequency devices, and microelectromechanical systems. These three-dimensional (3D) circuits pose important challenges for thermal management due to the increasing heat load per unit surface area. This paper theoretically studies 3D circuit cooling by means of an integrated microchannel network. Predictions are based on thermal models solving one-dimensional conservation equations for boiling convection along microchannels, and are consistent with past data obtained from straight channels. The model is combined within a thermal resistance network to predict temperature distributions in logic and memory. The calculations indicate that a layer of integrated microchannel cooling can remove heat densities up to 135W/cm2 within a 3D architecture with a maximum circuit temperature of 85°C. The cooling strategy described in this paper will enable 3D circuits to include greater numbers of active levels while exposing external surface area for functional signal transmission.

1.
Souri, S. J., Banerjee, K., Mehrotra, A., and Saraswat, K. C., 2000, “Multiple Si Layer ICs: Motivation, Performance Analysis, and Design Implications,” Proc. 37th ACM Design Automation Conference, Los Angeles, CA, pp. 213–220.
2.
Banerjee
,
K.
,
Souri
,
S. J.
,
Kapur
,
P.
, and
Saraswat
,
K. C.
,
2001
, “
3-D ICs: A Novel Chip Design for Improving Deep-Submicron Interconnect Performance and Systems-on-Chip Integration
,”
Proc. IEEE
,
89
(
5
), pp.
602
633
.
3.
DARPA MTO CFP, Section 1: BAA 03-25 3D Integrated Circuits Proposer Information (http://www.darpa.mil/mto/solicitations/BAA03-25/S/Section1.html).
4.
Kleiner, M. B., Kuhn, S. A., Ramm, P., and Weber, W., 1995, “Thermal Analysis of Vertically Integrated Circuits,” Tech. Dig.—Int. Electron Devices Meet., pp. 487–490.
5.
Rahman, A., and Reif, R., 2001, “Thermal Analysis of Three-Dimensional (3-D) Integrated Circuits (ICs),” Proc. IITC, pp. 157–159.
6.
Im, S., and Banerjee, K., 2000, “Full Chip Thermal Analysis of Planar (2-D) and Vertically Integrated (3-D) High Performance ICs,” Tech. Dig.—Int. Electron Devices Meet., pp. 727–730.
7.
Hu
,
C.
,
Morgen
,
M.
,
Ho
,
P. S.
,
Jain
,
A.
,
Gill
,
W. N.
,
Plawsky
,
J. L.
, and
Wayne
, Jr.,
P. C.
,
2000
, “
Thermal Conductivity Study of Porous Low-k Dielectric Materials
,”
Appl. Phys. Lett.
,
77
(
1
), pp.
145
147
.
8.
Leland
,
J. E.
,
Ponnappan
,
R.
, and
Klasing
,
K. S.
,
2002
, “
Experimental Investigation of an Air Microjet Array Impingement Cooling Device
,”
J. Thermophys. Heat Transfer
,
16
(
2
), pp.
187
192
.
9.
Pal
,
A.
,
Joshi
,
Y. K.
,
Beitelmal
,
M. H.
,
Patel
,
C. D.
, and
Wenger
,
T. M.
,
2002
, “
Design and Performance Evaluation of a Compact Thermosyphon
,”
IEEE Trans. Compon., Packaging Tech.
,
25
(
4
), pp.
601
607
.
10.
Jiang
,
L.
,
Mikkelsen
,
J.
,
Koo
,
J.
,
Huber
,
D.
,
Yao
,
S.
,
Zhang
,
L.
,
Zhou
,
P.
,
Maveety
,
J. G.
,
Prasher
,
R.
,
Santiago
,
J. G.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
,
2002
, “
Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits
,”
IEEE Trans. Components Packaging Tech.
,
25
(
3
), pp.
347
355
.
11.
Nguyen
,
N. T.
,
Huang
,
X. Y.
, and
Chuan
,
T. K.
,
2002
, “
MEMS-Micropumps: A Review
,”
J. Fluids Eng.
,
124
(
2
), pp.
384
392
.
12.
Koo, J., Jiang, L., Bari, A., Zhang, L., Wang, E., Kenny, T. W., Santiago, J. G., and Goodson, K. E., 2002, “Convective Boiling in Microchannel Heat Sinks with Spatially-Varying Heat Generation,” Proc. ITherm, San Diego, CA, pp. 341–346.
13.
Zhang
,
L.
,
Koo
,
J.
,
Jiang
,
L.
,
Asheghi
,
M.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
, and
Kenny
,
T. W.
,
2002
, “
Measurements and Modeling of Two-phase Flow in Microchannels with Nearly-Constant Heat Flux Boundary Conditions
,”
J. Microelectromech. Syst.
,
11
, pp.
12
19
.
14.
Ramm
,
P.
et al.
,
1997
, “
Three Dimensional Metallization for Vertically Integrated Circuits
,”
Microelectron. Eng.
,
37/38
, pp.
39
47
.
15.
Fan
,
A.
,
Rahman
,
A.
, and
Reif
,
R.
,
1999
, “
Copper Wafer Bonding
,”
Electrochem. Solid-State Lett.
,
2
(
10
), pp.
534
536
.
16.
Lee, K. W., Nakamura, T., Ono, T., Yamada, Y., Mizukusa, T., Hashimoto, H., Park, K. T., Kurino, H., and Koyanagi, M., 2000, “Three-Dimensional Shared Memory Fabricated Using Wafer Stacking Technology,” Tech. Dig.—Int. Electron Devices Meet., pp. 165–168.
17.
Reif, R., Fan, A., Chen, K., and Das, S., 2002, “Fabrication Technologies for Three-Dimensional Integrated Circuits,” Proc. ISQED, pp. 33–37.
18.
Zingg
,
R. P.
,
Friedrich
,
J. A.
,
Neudeck
,
G. W.
, and
Hofflinger
,
B.
,
1990
, “
Three-Dimensional Stacked MOS Transistors by Locallized Epitaxial Overgrowth
,”
IEEE Trans. Electron Devices
,
37
(
6
), pp.
1452
1461
.
19.
Neudeck
,
G. W.
,
Pae
,
S.
,
Denton
,
J. P.
, and
Su
,
T.
,
1999
, “
Multiple Layers of Silicon-on-Insulator for Nanostructure Devices
,”
J. Vac. Sci. Technol.
,
17
(
3
), pp.
994
998
.
20.
Pae
,
S.
,
Su
,
T.
,
Denton
,
J. P.
, and
Neudeck
,
G. W.
,
1999
, “
Multiple Layers of Silicon-on-Insulator Islands Fabrication by Selective Epitaxial Growth
,”
IEEE Electron Device Lett.
,
20
(
5
), pp.
194
196
.
21.
Kawamura
,
S.
,
Sasaki
,
N.
,
Iwai
,
T.
,
Nakano
,
M.
, and
Takagi
,
M.
,
1983
, “
Three-Dimensional CMOS IC’s Fabricated by Using Beam Recrystallization
,”
IEEE Electron Device Lett.
,
4
(
10
), pp.
366
368
.
22.
Sugahara
,
K.
,
Nishimura
,
T.
,
Kusunoki
,
S.
,
Akasaka
,
Y.
, and
Nakata
,
H.
,
1986
, “
SOI/SOI/Bulk-Si Triple Level Structure for Three-Dimensional Devices
,”
IEEE Electron Device Lett.
,
7
(
3
), pp.
193
195
.
23.
Knio, T., Oyama, K., Hayashi, Y., and Morimoto, M., 1989, “Three Dimensional ICs, Having Four Stacked Active Device Layers,” Tech. Dig.—Int. Electron Devices Meet., pp. 837–840.
24.
Kohno
,
A.
,
Sameshima
,
T.
,
Sano
,
N.
,
Sekiya
,
M.
, and
Hara
,
M.
,
1995
, “
High Performance poly-Si TFTs Fabricated Using Pulsed Laser Annealing and Remote Plasma CVD with Low Temperature Processing
,”
IEEE Trans. Electron Devices
,
42
(
2
), pp.
251
257
.
25.
Meyerson
,
B. S.
,
Ganin
,
E.
,
Smith
,
D. A.
, and
Nguyen
,
T. N.
,
1986
, “
Low Temperature Si Epitaxy by Hot Wall Ultrahigh Vacuum/Low Pressure Chemical Vapor Deposition Techniques: Surface Optimization
,”
J. Electrochem. Soc.
,
133
, pp.
1232
1235
.
26.
Donahue
,
T. J.
, and
Reif
,
R.
,
1985
, “
Silicon Epitaxy at 650-800°C using Low-Pressure Chemical Vapor Deposition Both With and Without Plasma Enhancement
,”
J. Appl. Phys.
,
57
, pp.
2757
2765
.
27.
Subramanian
,
V.
, and
Saraswat
,
K. C.
,
1998
, “
High-Performance Germanium-Seeded Laterally Crystallized TFT’s for Vertical Device Integration
,”
IEEE Trans. Electron Devices
,
45
(
9
), pp.
1934
1939
.
28.
Lee
,
S-W.
, and
Joo
,
K-K.
,
1983
, “
Low Temperature Poly-Si Thin Film Transistor Fabrication by Metal-Induced Lateral Crystallization
,”
IEEE Electron Device Lett.
,
17
(
4
), pp.
160
162
.
29.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
30.
Wei, X., and Joshi, Y., 2002, “Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling,” Proc. ITherm, San Diego, CA, pp. 441–448.
31.
Kandlikar, S. G., 2003, “Heat Transfer Mechanisms During Flow Boiling In Microchannels,” Proc. 1st Int. Conference on Micro/Minichannels, Rochester, NY, ICMM2003-1005.
32.
Peng
,
X. F.
,
Hu
,
H. Y.
, and
Wang
,
B. X.
,
1998
, “
Boiling Nucleation During Liquid Flow in Microchannels
,”
Int. J. Heat Mass Transfer
,
41
(
1
), pp.
101
106
.
33.
Peng
,
X. F.
,
Tian
,
Y.
, and
Lee
,
D. J.
,
2002
, “
Arguments on Microscale Boiling Dynamics
,”
Microscale Thermophys. Eng.
,
6
(
1
), pp.
75
83
.
34.
Bowers
,
M. B.
, and
Mudawar
,
I.
,
1994
, “
Two-Phase Electronic Cooling Using Mini-Channel and Micro-Channel Heat Sinks: Part 1–Design Criteria and Heat Diffusion Constraints
,”
ASME J. Electron. Packag.
,
116
, pp.
290
297
.
35.
Bowers
,
M. B.
, and
Mudawar
,
I.
,
1994
, “
Two-Phase Electronic Cooling Using Mini-Channel and Micro-Channel Heat Sinks: Part 2–Flow Rate and Pressure Drop Constraints
,”
ASME J. Electron. Packag.
,
116
, pp.
298
305
.
36.
Stanley, R. S., Barron, R. F., and Ameel, T. A., 1997, “Two-Phase Flow in Microchannels,” DSC-Vol. 62/HTD-Vol. 34 MEMS, ASME, pp. 143–152.
37.
Triplett
,
K. A.
,
Ghiaasiaan
,
S. M.
,
Abdel-Khalik
,
S. I.
, and
Sadowski
,
D. L.
,
1999
, “
Gas-Liquid Two-Phase Flow in Microchannels, Parts I & II
,”
Int. J. Multiphase Flow
,
25
, pp.
377
410
.
38.
Akbar
,
M. K.
,
Plummer
,
D. A.
, and
Ghiaasiaan
,
S. M.
,
2003
, “
On Gas-Liquid Two-Phase Flow Regimes in Microchannels
,”
Int. J. Multiphase Flow
,
29
, pp.
855
865
.
39.
Peles
,
Y. P.
,
Yarin
,
L. P.
, and
Hetsroni
,
G.
,
2001
, “
Steady and Unsteady Flow in a Heated Capillary
,”
Int. J. Multiphase Flow
,
27
(
4
), pp.
577
598
.
40.
Hetsroni
,
G.
,
Mosyak
,
A.
, and
Segal
,
Z.
,
2001
, “
Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels
,”
IEEE Trans. Components Packaging Tech.
,
23
(
1
), pp.
16
23
.
41.
Yarin
,
L. P.
,
Ekelchik
,
L. A.
, and
Hetsroni
,
G.
,
2002
, “
Two-Phase Laminar Flow in a Heated Microchannels
,”
Int. J. Multiphase Flow
,
28
(
10
), pp.
1589
1616
.
42.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2737
2753
.
43.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks–I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2755
2771
.
44.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks–II. Annular Two-Phase Flow Model
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2773
2784
.
45.
Lee
,
M.
,
Wong
,
Y. Y.
,
Wong
,
M.
, and
Zohar
,
Y.
,
2003
, “
Size and Shape Effects on Two-Phase Flow Patterns in Microchannel Forced Convection Boiling
,”
J. Micromech. Microeng.
,
13
, pp.
155
164
.
46.
Koo, J., Jiang, L., Zhang, L., Zhou, P., Banerjee, S. S., Kenny, T. W., Santiago, J. G., and Goodson, K. E., 2001, “Modeling of Two-phase Microchannel Heat Sinks for VLSI Chips,” Proc. Int. MEMS Workshop, Interlaken, Switzerland, pp. 422–426.
47.
Koo, J., Im, S., Cho, E., Prasher, R. S., Wang, E., Jiang, L., Bari, A., Campion, D., Fogg, D., Kim, M., Kenny, T. W., Santiago, J. G., and Goodson, K. E., 2002, “VLSI Hotspot Cooling Using Two-Phase Microchannel Convection,” ASME Proc. IMECE, New Orleans, LA, IMECE2002-39585.
48.
Incropera, F. P., and DeWitt, D. P., 1996, Fundamentals of Heat and Mass Transfer, 4th ed., John Wiley, New York.
49.
Kays, W. M., and Crawford, M. E., 1993, Convective Heat and Mass Transfer, 3rd ed., McGraw-Hill, New York.
50.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
,
112
, pp.
219
228
.
51.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.
52.
Harr, L., Gallagher, J. S., and Kell, G. S., 1984, NBS/NRC Steam Tables, Hemisphere, Washington.
53.
Chiang, T.-Y., Souri, S. J., Chui, C. O., and Saraswat, K., 2001, “Thermal Analysis of Heterogeneous 3-D ICs with Various Integration Scenarios,” Tech. Dig.—Int. Electron Devices Meet., pp. 681–684.
You do not currently have access to this content.