The paper presents a theoretical model to predict film condensation heat transfer from a vapor flowing in horizontal square and equilateral triangular section minichannels or microchannels. The model is based on fundamental analysis which assumes laminar condensate flow on the channel walls and takes account of surface tension, interfacial shear stress, and gravity. Results are given for channel sizes (side of square or triangle) in the range of 0.5–5 mm and for refrigerants R134a, R22, and R410A. The cases considered here are where the channel wall temperature is uniform and the vapor is saturated at the inlet. The general behavior of the condensate flow pattern (spanwise and streamwise profiles of the condensate film), as well as streamwise variation of local mean (over section perimeter) heat-transfer coefficient and vapor mass quality, are qualitatively in accord with expectations on physical grounds. The magnitudes of the calculated heat-transfer coefficients are in general agreement with experimental data for similar, but nonidentical, channel geometry and flow parameters.

1.
Palm
,
B.
, 2003, “
Mini- and Micro-Channel Research in Sweden
,”
Proc. 1st Int. Conf. on Microchannels and Minichannels
, Rochester, NY April 24–25,
ASME
, pp.
25
31
.
2.
Gregorig
,
R.
, 1954, “
Hautcondensation an Feingewelten Oberflachen bei Beruksichtigung der Oberflachenspannungen
,”
Z. Angew. Math. Phys.
0044-2275,
5
, pp.
36
49
.
3.
Rose
,
J. W.
, 2004, “
Surface Tension Effects and Enhancement of Condensation Heat Transfer
,”
Trans. IChemE, Chem. Eng. Research and Design
,
82
(
A4
), pp.
419
429
.
4.
Cavallini
,
A.
,
Censi
,
G.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
A. G.
, and
Rossetto
,
L.
, 2002, “
Condensation Heat Transfer and Pressure Drop inside Channels for AC/HP Application
,”
Proc. 12th Int. Heat Transfer Conference
, Grenoble, France, August 18–23, Vol.
1
, pp.
171
186
.
5.
Yang
,
M.
, and
Webb
,
R. L.
, 1996, “
Condensation of R-12 in Small Hydraulic Diameter Extruded Aluminum Tubes with and without Micro-Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
791
800
.
6.
Vardhan
,
A.
, and
Dunn
,
E. E.
, 1997, “
Heat Transfer and Pressure Drop Characteristics of R-22, R-134a and R-407C in Microchannel Tubes
,” ACRC TR-133,
University of Illinois at Urbana-Champaign
.
7.
Yan
,
Y. Y.
, and
Lin
,
T. F.
, 1999, “
Condensation Heat Transfer and Pressure Drop of Refrigerant R134a in a Small Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
697
708
.
8.
Kim
,
N. H.
,
Cho
,
J. P.
and
Kim
,
J. O.
, 2000, “
R-22 Condensation in Flat Aluminum Multi-Channel Tubes
,”
J. Enhanced Heat Transfer
1065-5131,
7
, pp.
427
438
.
9.
Zhang
,
M.
, and
Webb
,
R. L.
, 2001, “
Correlation of Two-Phase Friction for Refrigerants in Small-Diameter Tubes
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
, pp.
131
139
.
10.
Webb
,
R. L.
, and
Ermis
,
K.
, 2001, “
Effect of Hydraulic Diameter on Condensation of R-134a in Flat, Extruded Aluminum Tubes
,”
J. Enhanced Heat Transfer
1065-5131,
8
, pp.
77
90
.
11.
Wang
,
W. W. W.
,
Radcliff
,
T. D.
, and
Christensen
,
R. N.
, 2002, “
A Condensation Heat Transfer Correlation for Millimeter-Scale Tubing with Flow Regime Transition
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
473
485
.
12.
Garimella
,
S.
, and
Bandhauer
,
T. M.
, 2001, “
Measurement of Condensation Heat Transfer Coefficients in Microchannel Tubes
,”
Proc. 2001 Int. Mechanical Engineering Congress and Exposition
, NY, IMECE 2001/ HTD-24221, November, pp.
1
7
.
13.
Ermis
,
K.
, and
Ekmekci
,
I.
, 2003, “
Condensation Heat Transfer in a Small Hydraulic Diameter Extruded Aluminum Tubes
,”
Proc. 1st Int. Exergy, Energy and Environment Symp. 13–17 Izmir
, Turkey, July, pp.
201
206
.
14.
Kim
,
N. H.
,
Cho
,
J. P.
,
Kim
,
J. O.
, and
Youn
,
B.
, 2003, “
Condensation Heat Transfer of R-22 and R-410A in Flat Aluminum Multi-Channel Tubes with and without Micro-Fins
,”
Int. J. Refrig.
0140-7007,
26
, pp.
830
839
.
15.
Kim
,
M. H.
,
Shin
,
J. S.
,
Huh
,
C.
,
Kim
,
T. J.
, and
Seo
,
K. W.
, 2003, “
A Study of Condensation Heat Transfer in a Single Mini-Tube and a Review of Korean Micro- and Mini-Channel Studies
,”
Proc. 1st Int. Conf. on Microchannels and Minichannels
, April 24–25, Rochester, NY, pp.
47
58
.
16.
Baird
,
J. R.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
, 2003, “
Local Condensation Heat Transfer Rates in Fine Passages
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4453
4466
.
17.
Rose
,
J. W.
, 2004, “
Heat-Transfer Coefficients, Wilson Plots and Accuracy of Thermal Measurements
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
77
86
.
18.
Coleman
,
J. W.
, 2000, “
Flow Visualization and Pressure Drop for Refrigerant Phase Change and Air-Water Flow in Small Hydraulic Diameter Geometries
,” Ph.D. thesis, Iowa State University.
19.
Coleman
,
J. W.
, and
Garimella
,
S.
, 1999, “
Characterization of Two-Phase Flow Patterns in Small Diameter Round and Rectangular Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
2869
2881
.
20.
Coleman
,
J. W.
, and
Garimella
,
S.
, 2000, “
Two-Phase Flow Regime Transitions in Microchannel Tubes: The Effect of Hydraulic Diameter
,”
Proc. ASME Heat Transfer Division
,
366-4
, pp.
71
83
.
21.
Coleman
,
J. W.
, and
Garimella
,
S.
, 2000, “
Visualization of Two-Phase Refrigerant Flow during Phase Change
,”
Proc. 34th Nat. Heat Transfer Conf.
, NHTC2000-12115, Aug. 20–22, Pittsburgh.
22.
Garimella
,
S.
, 2003, “
Condensation Flow Mechanisms in Microchannels: Basis for Pressure Drop and Heat Transfer Models
,”
Proc. 1st Int. Conf. on Microchannels and Minichannels
,
ASME
, Rochester, NY, April 24–25, pp.
181
192
23.
Koyama
,
S.
,
Kuwahara
,
K.
,
Nakashita
,
K.
, and
Yamamoto
,
K.
, 2003, “
Condensation of Refrigerant R134a in a Multiport Channel
,”
Proc. 1st Int. Conf. on Microchannels and Minichannels
,
ASME
, Rochester, NY, April 24–25, pp.
193
205
.
24.
Koyama
,
S.
,
Kuwahara
,
K.
,
Nakashita
,
K.
, and
Yamamoto
,
K.
, 2003, “
An Experimental Study on Condensation of Refrigerant R134a in a Multiport Extruded Tube
,”
Int. J. Refrig.
0140-7007,
26
, pp.
425
-
432
.
25.
Cavallini
,
A.
,
Censi
,
G.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
A. G.
,
Rossetto
,
L.
, and
Zilio
,
C.
, 2003, “
Experimental Investigation on Condensation Heat Transfer Coefficient Inside Multi-Port Channels
,”
Proc. 1st Int. Conf. on Microchannels and Minichannels
,
ASME
, Rochster, NY, April 24–25, pp.
691
698
.
26.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
, and
Zilio
,
C.
, 2004, “
Condensation Heat Transfer Inside Multi-Port Minichannels
,”
Proc. 2nd Int. Conf. on Microchannels and Minichannels
,
ASME
, Rochester NY, pp.
625
632
.
27.
Zhao
,
T. S.
, and
Liao
,
Q.
, 2002, “
Theoretical Analysis of Film Condensation Heat Transfer Inside Vertical Mini Triangular Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2829
2842
.
28.
Wang
,
H. S.
, and
Rose
,
J. W.
, 2004, “
Condensation in Microchannels
,”
Proc. 6th Int. Symp. On Heat Transfer
, Beijing, China, June 15–19, pp.
22
31
.
29.
Wang
,
H. S.
,
Rose
,
J. W.
, and
Honda
,
H.
, 2004, “
A Theoretical Model of Film Condensation in Square Section Microchannels
,”
Trans. IChemE, Chem. Eng. Research and Design
,
82
(
A4
), pp.
430
434
.
30.
Wang
,
H. S.
, and
Rose
,
J. W.
, 2004, “
Film Condensation in Horizontal Triangular Section Microchannels
,”
Proc. 2nd Int. Conf. on Microchannels and Minichannels
,
ASME
, Rochester, NY, pp.
661
666
.
31.
Honda
,
H.
,
Wang
,
H. S.
, and
Nozu
,
S.
, 2002, “
A Theoretical Study of Film Condensation in Horizontal Microfin Tubes
,”
ASME J. Heat Transfer
0022-1481,
124
(
1
), pp.
94
101
.
32.
Mickley
,
H. S.
,
Ross
,
R. C.
,
Squyers
,
A. L.
, and
Stewart
,
W. E.
, 1954, “
Heat, Mass and Momentum Transfer for Flow over a Flat Plate with Blowing or Suction
,” Rep. No. NACA-TN-3208.
33.
Kays
,
W. M.
,
Crawford
,
M. E.
and
Weigand
,
B.
, 2005,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw-Hill
, New York, pp.
212
215
.
34.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
, 1999, “
A New Computational Procedure for Heat Transfer and Pressure Drop during Refrigerant Condensation inside Enhanced Tubes
,”
J. Enhanced Heat Transfer
1065-5131,
6
, pp.
441
456
.
35.
Churchill
,
S. W.
, 1977, “
Friction-Factor Equation Spans All Fluid-Flow Regimes
,”
Chem. Eng.
,
84
, pp.
91
92
.
36.
Rose
,
J. W.
, 1998, “
Interphase Matter Transfer, the Condensation Coefficient and Dropwise Condensation
,”
Proc. 11th Int. Heat Transfer Conf.
, Kyongju, Korea, Aug., Vol.
1
, pp.
89
104
.
37.
NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerants Mixtures—REFPROP, Version 6.0
.
You do not currently have access to this content.