The dispersion relation for an electromagnetic wave is obtained in particulate media using effective field approximation (EFA) and quasi-crystalline approximation (QCA). Due to multiple and dependent scattering the density of states, phase velocity and group velocity of photons are modified. Modification of these parameters modifies the Planck blackbody equilibrium radiation intensity and emissive power. Results show that EFA can accurately capture the dependence of density of states, phase velocity, and the group velocity on volume fraction of scatterers whereas QCA can capture the dependence of effective attenuation as well as density of states, phase velocity, and the group velocity. Comparisons of the temperature, heat flux, and effective attenuation are made between EFA, QCA, and work done by C. L. Tien and co-workers. Results show that heat flux and temperature predictions made by models in the literature for multiple and dependent scattering are not correct as these models do not take the modification of the equilibrium intensity into account. Finally we introduce a new model called dependent effective field approximation (DEFA) which accurately captures the effect of volume fraction on the equilibrium intensity and effective attenuation.

1.
Siegel
,
R.
, and
Howell
,
J. R.
, 1992,
Thermal Radiation Heat Transfer
,
Hemisphere Publishing Corporation
, Washington, DC.
2.
Drolen
,
B. L.
, and
Tien
,
C. L.
, 1987, “
Independent and Dependent Scattering in Packed Sphere Systems
,”
J. Thermophys. Heat Transfer
0887-8722,
1
(
1
), pp.
63
68
.
3.
Brewster
,
M. Q.
, and
Tien
,
C. L.
, 1982, “
Radiative Transfer in Packed Fluidized Beds: Dependent Versus Independent Scattering
,”
ASME J. Heat Transfer
0022-1481,
1
, pp.
573
579
.
4.
Tien
,
C. L.
, 1988, “
Thermal Radiation in Packed and Fluidized Beds
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
1230
1242
.
5.
Kumar
,
S.
, and
Tien
,
C. L.
, 1990, “
Dependent Absorption and Extinction of Radiation by Small Particles
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
178
185
.
6.
Ma
,
Y.
,
Varadan
,
V. K.
, and
Varadan
,
V. V.
, 1990, “
Enhanced Absorption Due to Dependent Scattering
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
402
407
.
7.
Saulnier
,
P. M.
,
Zinkin
,
M. P.
, and
Watson
,
G. H.
, 1990, “
Scatterer Correlation Effects on Photon Transport in Dense Random Media
,”
Phys. Rev. B
0163-1829,
42
, pp.
2621
2623
.
8.
Lax
,
M.
, 1952, “
Multiple Scattering of Waves. II, The Effective Field of Dense Systems
,”
Phys. Rev.
0031-899X,
85
(
4
), pp.
621
629
.
9.
Lax
,
M.
, 1951, “
Multiple Scattering of Waves. II
,”
Rev. Mod. Phys.
0034-6861,
23
(
4
), pp.
287
309
.
10.
Meulen
,
F. V.
,
Feuillard
,
G.
,
Matar
,
O. B.
,
Levassort
,
F.
, and
Lethiecq
,
M.
, 2001, “
Theoretical and Experimental Study of the Influence of the Particle Size Distribution on the Acoustic Wave Properties of Strongly Homogeneous Media
,”
J. Acoust. Soc. Am.
0001-4966,
110
(
5
), pp.
2301
2307
.
11.
Meulen
,
F. V.
,
Feuillard
,
G.
,
Matar
,
O. B.
,
Levassort
,
F.
, and
Lethiecq
,
M.
, 1999, “
Comparison Between Multiple Scattering Theories and Velocity and Attenuation Measurements in Highly Loaded Liquid Media
,”
IEEE Ultrasonics Symposium
, pp.
723
726
.
12.
Kim
,
J.-Y.
,
Ij
,
J.-G.
, and
Lee
,
B.-H.
, 1995, “
Dispersion of Elastic Waves in Random Particulate Composites
,”
J. Acoust. Soc. Am.
0001-4966,
97
(
3
), pp.
1380
1388
.
13.
Tsang
,
L.
, and
Kong
,
J. A.
, 1982, “
Effective Propagation Constants for Coherent Electromagnetic Wave Propagation in Media Embedded with Dielectric Scattererrs
,”
J. Appl. Phys.
0021-8979,
53
(
11
), pp.
7162
7173
.
14.
Tsang
,
L.
, and
Kong
,
J. A.
, 1981, “
Multiple Scattering of Electromagnetic Waves by Random Distributions of Discrete Scatterers With Coherent Potential and Quantum Mechanical Formulism
,”
J. Appl. Phys.
0021-8979,
51
(
7
), pp.
3465
3485
.
15.
Ishimaru
,
A.
, and
Kuga
,
Y.
, 1982, “
Attenuation Constant of Coherent Field in a Dense Distribution of Particles
,”
J. Opt. Soc. Am.
0030-3941,
72
(
10
), pp.
1317
1320
.
16.
Cartigny
,
J. D.
,
Yamada
,
Y.
, and
Tien
,
C. L.
, 1986, “
Radiative Transfer With Dependent Scattering by Particles: Part 1-Theoretical Investigation
,”
ASME J. Heat Transfer
0022-1481,
108
, pp.
608
613
.
17.
West
,
R.
,
Gibbs
,
D.
,
Tsang
,
L.
, and
Fung
,
A. K.
, 1994, “
Comparison of Optical Scattering Experiments and the Quasi-Crystalline Approximation for Dense Media
,”
J. Opt. Soc. Am. A
0740-3232,
11
(
6
), pp.
1854
1858
.
18.
Garg
,
R.
,
Prudhomme
,
R. K.
,
Aksay
,
I. A.
,
Liu
,
F.
, and
Alfano
,
R. R.
, 1998, “
Optical Transmission in Highly Concentrated Dispersions
,”
J. Opt. Soc. Am. A
0740-3232,
15
(
4
), pp.
932
935
.
19.
West
,
R.
,
Gibbs
,
D.
,
Tsang
,
L.
, and
Fung
,
A. K.
, 1994, “
Comparison of Optical Scattering Experiments and the Quasi-Crystalline Approximation for Dense Media
,”
J. Opt. Soc. Am. A
0740-3232,
11
(
6
), pp.
1854
1858
.
20.
Majumdar
,
A.
, 1993, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
7
16
.
21.
Bohren
,
C. F.
, and
Huffman
,
D. R.
, 1983,
Absorption and Scattering of Light by Small Particles
,
Wiley-Interscience Publications
, New York.
22.
Truell
,
R.
,
Elbaum
,
C.
, and
Chick
,
B. B.
, 1969,
Ultrasonic Methods in Solid State Physics
,
Academic Press
, New York.
23.
Gaunard
,
G. C.
, and
Wertman
,
W.
, 1989, “
Comparison of Effective Medium Theories for Inhomogeneous Continua
,”
J. Acoust. Soc. Am.
0001-4966,
85
(
2
), pp.
541
554
.
24.
Twersky
,
V.
, 1975, “
Transparency of Pair-Correlated Random Distributions of Small Scatterers, with Applications to the Cornea
,”
J. Opt. Soc. Am.
0030-3941,
65
, pp.
524
530
.
25.
Li
,
Z.-Y.
, 2002, “
Modified Thermal Radiation in Three-Dimensional Photonic Crystals
,”
Phys. Rev. B
0163-1829,
66
, p.
241103
(R).
26.
Cornelius
,
C. M.
, and
Dowling
,
J. P.
, 1999, “
Modification of Planck Black Body Radiation by Photonic Band-gap Structures
,”
Phys. Rev. A
1050-2947,
59
(
6
), pp.
4736
4746
.
27.
Stoyanov
,
A. J.
,
Howell
,
B. F.
,
Fischer
,
E. C.
,
Uberall
,
H.
, and
Chouffani
,
K.
, 1999, “
Effective-medium Model Dependence of the Radar Reflectivity of Conducting Particle Films
,”
J. Appl. Phys.
0021-8979,
86
(
6
), pp.
3110
3119
.
You do not currently have access to this content.