Microdevices are becoming more prevalent and important in current and future technologies. Over the past decade, countless studies have been conducted in developing thermal microdevices. This paper focuses on the progress of research made during the last decade regarding heat transfer and fluid flow in microheat sinks, micropumps, microturbines, microengines, micromixers, as well as microsensors. Recent experimental techniques in the thermal microelectromechanical systems (MEMS) field have also been presented. Although some thermal MEMS devices have penetrated the commercial market, the mass implementation of thermal MEMS devices in future technology is still quite far, and is highly desirable. During the next decade, vast amounts of research need to be conducted before other microdevices can infiltrate the mainstream. Possible future directions of research have also been provided.

1.
Papautsky
,
I.
,
Ameel
,
T.
, and
Frazier
,
A. B.
, 2001,
A Review of Laminar Single-Phase Flow in Microchannels
,
Proc. ASME International Mechanical Engineering Congress and Exposition
, Nov. 11–16,
New York, NY
,
Micro-Electromechanical Systems Division Publication (MEMS)
, Vol.
3
, Micro-Electro-Mechanical Systems (MEMS), IMECE2001, pp.
495
503
.
2.
Mala
,
G. M.
, and
Li
,
D.
, 1999, “
Flow Characteristics of Water in Microtubes
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
142
148
.
3.
Celata
,
G. P.
,
Cumo
,
M.
,
Gulielmi
,
M.
, and
Zummo
,
G.
, 2000, “
Experimental Investigation of Hydraulic and Single-Phase Heat Transfer in 0.130 mm Capillary Tube
,”
Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale
, Oct. 15–20, Banff, Canada,
G. P.
Celata
, ed.,
Begell House
,
New York, NY
, pp.
108
113
.
4.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
An Experimental Study of Convective Heat Transfer in Silicon Microchannels With Different Surface Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2547
2556
.
5.
Lelea
,
D.
,
Nishio
,
S.
, and
Takano
,
K.
, 2004, “
The Experimental Research on Micro Tube Heat Transfer and Fluid Flow of Distilled Water
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2817
2830
.
6.
Kim
,
D.
, and
Darve
,
E.
, 2005, “
Interactions of Wall Roughness and Electroosmotic Flows Inside Nanochannels
,”
Proceedings of the Third International Conference on Microchannels and Minichannels
, June 13–15, Toronto, Canada,
PART B
, ICMM2005-75237,
ASME
,
New York, NY
, pp.
641
645
.
7.
Li
,
Z. X.
,
Du
,
D. X.
, and
Guo
,
Z. Y.
, 2000, “
Experimental Study on Flow Characteristics of Liquid in Circular Microtubes
,”
Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale
, Oct. 15–20, Banff, Canada,
G. P.
Celata
, ed.,
Begell House
,
New York, NY
, pp.
162
167
.
8.
Zeighami
,
R.
,
Laser
,
D.
,
Zhou
,
P.
,
Asheghi
,
M.
,
Devasenathipathy
,
S.
,
Kenny
,
T.
,
Santiago
,
J.
, and
Goodson
,
K.
, 2000, “
Experimental Investigation of Flow Transition in Microchannels Using Micron-Resolution Particle Image Velocimetry
,”
Proc. IEEE 7th Intersociety Conference on Thermomechanical Phenomena in Electronic Systems
, May 23–26, Las Vegas, NV,
IEEE
, Vol.
2
, ITHERM.2000.866184, pp.
148
153
.
9.
Peng
,
X. F.
, and
Peterson
,
G. P.
, 1996, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
12
), pp.
2599
2608
.
10.
Xu
,
B.
,
Ooi
,
K. T.
,
Wong
,
N. T.
, and
Choi
,
W. K.
, 2000, “
Experimental Investigation of Flow Friction for Liquid Flow in Microchannels
,”
Int. Commun. Heat Mass Transfer
0735-1933,
27
(
8
), pp.
1165
1176
.
11.
Damianides
,
C. A.
, and
Westwater
,
J. W.
, 1988, “
Two-Phase Patterns in a Compact Heat Exchanger and in Small Tubes
,”
Proc. IMechE 2nd UK National Conference on Heat Transfer
, Sept. 14–16, Glasgow, U.K.,
Mech. Engng. Publications Ltd.
, Bury St. Edmunds, U.K., Vol.
2
, pp.
1257
1268
.
12.
Fukano
,
T.
,
Kariyasaki
,
A.
, and
Kagawa
,
M.
, 1989, “
Flow Patterns and Pressure Drop in Isothermal Gas-Liquid Cocurrent Flow in a Horizontal Capillary Tube
,”
Proc. ANS 1989 National Heat Transfer Conference: Technical Sessions
, American Nuclear Society, La Grange Park, IL, Vol.
4
, pp.
153
161
.
13.
Mishima
,
K.
,
Hibiki
,
T.
, and
Nishihara
,
H.
, 1993, “
Some Characteristics of Gas-Liquid Flow in Narrow Rectangular Ducts
,”
Int. J. Multiphase Flow
0301-9322,
19
, pp.
115
124
.
14.
Xu
,
J. L.
,
Cheng
,
P.
, and
Zhao
,
T. S.
, 1999, “
Gas-Liquid Two-Phase Flow Regimes in Rectangular Channels With Mini/Micro Gaps
,”
Int. J. Multiphase Flow
0301-9322,
25
, pp.
411
432
.
15.
Triplett
,
K. A.
,
Ghiaasiaan
,
S. M.
,
Abdel-Khalik
,
S. I.
, and
Sadowski
,
D. L.
, 1999, “
Gas-Liquid Two-Phase Flow in Microchannels, Part I: Two-Phase Flow Patterns
,”
Int. J. Multiphase Flow
0301-9322,
25
, pp.
377
394
.
16.
Zhao
,
T. S.
, and
Bi
,
Q. C.
, 2001, “
Co-Current Air-Water Two-Phase Flow Patterns in Vertical Triangular Microchannels
,”
Int. J. Multiphase Flow
0301-9322,
27
, pp.
765
782
.
17.
Feng
,
Z.
, and
Serizawa
,
A.
, 2000,
Two-Phase Flow Patterns in an Ultra-Small-Scale Flowing Passage
,
Department of Nuclear Engineering, Kyoto University
, Japan.
18.
Kawahara
,
A. P.
,
Chung
,
M. Y.
,
Kawaji
,
M.
, 2002, “
Investigation of Two-Phase Flow Patterns, Void Fraction and Pressure Drop in a Microchannel
,”
Int. J. Multiphase Flow
0301-9322,
28
, pp.
1411
1435
.
19.
Hassan
,
I.
,
Vaillancourt
,
M.
, and
Pehlivan
,
K.
, 2005, “
Two-Phase Flow Regime Transitions in Microchannels: A Comparative Experimental Study
,”
Microscale Thermophys. Eng.
1089-3954,
9
(
2
), pp.
165
182
.
20.
Thome
,
J. R.
, 2004, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
128
139
.
21.
Kandlikar
,
S. G.
, 2002, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
389
407
.
22.
Brutin
,
D.
,
Topin
,
F.
, and
Tadrist
,
L.
, 2003, “
Experimental Study of Unsteady Convective Boiling in Heated Minichannels
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2957
2965
.
23.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2004, “
Boiling Instability in Parallel Silicon Microchannels at Different Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3631
3641
.
24.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
EDL-2
(
5
), pp.
126
129
.
25.
Rahman
,
M. M.
, 2000, “
Measurements of Heat Transfer in Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
0735-1933,
27
(
4
), pp.
495
506
.
26.
Fedorov
,
A. G.
, and
Viskanta
,
R.
, 2000, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
3
), pp.
399
415
.
27.
Jang
,
S. P.
,
Kim
,
S. J.
, and
Paik
,
K. W.
, 2003, “
Experimental Investigation of Thermal Characteristics for a Micro Channel Heat Sink Subject to an Impinging Jet, Using a Micro-Thermal Sensor Array
,”
Sens. Actuators, A
0924-4247,
105
, pp.
211
224
.
28.
Kawano
,
K.
,
Sekimura
,
M.
,
Minakami
,
K.
,
Iwasaki
,
H.
, and
Ishizuka
,
M.
, 2001, “
Development of Micro Channel Heat Exchanging
,”
JSME Int. J., Ser. B
1340-8054,
44
(
4
), pp.
592
598
.
29.
Jiang
,
P.-X.
,
Fan
,
M.-H.
,
Si
,
G.-S.
, and
Ren
,
Z.-P.
, 2001, “
Thermal Hydraulic Performance of Small Scale Micro Channel and Porous Media Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1039
1051
.
30.
Hestroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Ziskind
,
G.
, 2002, “
A Uniform Temperature Heat Sink for Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3275
3286
.
31.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks: Part I: Experimental Investigation and Assessment of Correlation Methods. Part II: Annular Two-Phase Flow Model
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2755
2784
.
32.
Koo
,
J.
,
Jiang
,
L.
,
Bari
,
A.
,
Zhang
,
L.
, and
Wang
,
E.
, 2002, “
Convective Boiling in Microchannel Heat Sinks With Spatially-Varying Heat Generation
,”
Proc. IEEE 8th Intersociety Conference on Thermomechanical Phenomena in Electronic Systems
, May 30–June 1, San Diego, CA,
IEEE
, ITHERM.2002.1012477, pp.
341
346
.
33.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 2001, “
Forced Convection Boiling in a Microchannel Heat Sink
,”
J. Microelectromech. Syst.
1057-7157,
10
(
1
), pp.
80
87
.
34.
Quadir
,
G. A.
,
Mydin
,
A.
, and
Seetharamu
,
K. N.
, 2001, “
Analysis of Micro Channel Heat Exchanger Using FEM
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
11
(
1
), pp.
59
75
.
35.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
321
332
.
36.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
, 2003, “
Critical Heat Flux in Microchannels: Experimental Issues and Guidelines for Measurement
,”
Proc. ASME 1st International Conference on Microchannels and Minichannels
, April 24–25, Rochester, NY,
S.
Kandlikar
, ed.,
ASME
, ICMM2003-1016, pp.
141
147
.
37.
Yu
,
W.
,
France
,
D. M.
,
Wambsganss
,
M. W.
, and
Hull
,
J. R.
, 2002, “
Two-Phase Pressure Drop, Boiling Heat Transfer, and Critical Heat Flux to Water in a Small-Diameter Horizontal Tube
,”
Int. J. Multiphase Flow
0301-9322,
28
, pp.
927
941
.
38.
Hollingsworth
,
K.
, 2004, “
Liquid Crystal Imaging of Flow Boiling in Minichannels
,”
Proc. ASME 2nd International Conference on Microchannels and Minichannels
, June 17–19, Rochester, NY,
S.
Kandlikar
, ed.,
ASME
, ICMM2004-2320. pp.
57
66
.
39.
Piasecka
,
M.
, and
Poniewski
,
M. E.
, 2004, “
Influence of Selected Parameters on Boiling Heat Transfer in Minichannels
,”
Proc. ASME 2nd International Conference on Microchannels and Minichannels
, June 17–19, Rochester, NY,
S.
Kandlikar
, ed.,
ASME
, ICMM2004-2376, pp.
515
521
.
40.
Vafai
,
K.
, and
Zhu
,
L.
, 1999, “
Analysis of Two Layered Micro Channel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
12
), pp.
2287
2297
.
41.
Sen
,
M.
,
Wajerski
,
D.
, and
Gad-el-Hak
,
M.
, 1996, “
A Novel Pump for MEMS Applications
,”
ASME J. Fluids Eng.
0098-2202,
118
, pp.
624
627
.
42.
Laser
,
D. J.
, and
Santiago
,
J. G.
, 2004, “
A Review of Micropumps
,”
J. Micromech. Microeng.
0960-1317,
14
(
6
), pp.
R35
R64
.
43.
Gravesen
,
P.
,
Branebjerg
,
J.
, and
Jensen
,
O. S.
, 1993, “
Microfluidics – A Review
,”
J. Micromech. Microeng.
0960-1317,
3
(
4
), pp.
168
182
.
44.
Stemme
,
E.
, and
Stemme
,
G.
, 1993, “
Valveless Diffuser/Nozzle-Based Fluid Pump
,”
Sens. Actuators, A
0924-4247,
39
(
2
), pp.
159
167
.
45.
Olsson
,
A.
,
Stemme
,
G.
, and
Stemme
,
E.
, 2000, “
Numerical and Experimental Studies of Flat-Walled Diffuser Elements for Valve-Less Micropumps
,”
Sens. Actuators, A
0924-4247,
84
(
1
), pp.
165
175
.
46.
Olsson
,
A.
,
Stemme
,
G.
, and
Stemme
,
E.
, 1996, “
Micromachined Diffuser/Nozzle Elements for Valve-Less Pumps
,”
Proc. IEEE 9th International Workshop on Micro Electro Mechanical Systems (MEMS '96)
, Feb. 11–15, San Diego, CA,
IEEE
, MEMSYS.1996.494011, pp.
378
383
.
47.
Olsson
,
A.
,
Stemme
,
G.
, and
Stemme
,
E.
, 1997, “
Simulation Studies of Diffuser and Nozzle Elements for Valve-Less Micropumps
,”
Proc. IEEE 9th International Conference on Solid-State Sensors and Actuators (Transducers '97)
, June 16–19, Chicago, IL,
IEEE
, Vol.
2
, SENSOR.1997.635363, pp.
1039
1042
.
48.
Bart
,
S. F.
,
Tavrow
,
L. S.
,
Mehregany
,
M.
, and
Lang
,
J. H.
, 1990, “
Microfabricated Electrohydrodynamic Pumps
,”
Sens. Actuators, A
0924-4247,
21
(
1–3
), pp.
193
197
.
49.
Harrison
,
D. J.
,
Manz
,
A.
, and
Glavina
,
P. G.
, 1991, “
Electrosmotic Pumping Within a Chemical Sensor System Integrated on Silicon
,”
Proc. IEEE 6th International Conference on Solid-State Sensors and Actuators (Transducers '91)
, June 24–27, San Francisco, CA,
IEEE
, SENSOR.1991.149002, pp.
792
795
.
50.
Manz
,
A.
,
Effenhauser
,
C. S.
,
Burggraf
,
N.
,
Harrsion
,
D. J.
,
Seiler
,
K.
, and
Fluri
,
K.
, 1994, “
Electroosmotic Pumping and Electrophoretic Separations for Miniaturized Chemical Analysis Systems
,”
J. Micromech. Microeng.
0960-1317,
4
(
4
), pp.
257
265
.
51.
Sharatchandra
,
M. C.
,
Sen
,
M.
, and
Gad-el-Hak
,
M.
, 1997, “
Navier-Stokes Simulation of a Novel Viscous Pump
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
372
382
.
52.
Sharatchandra
,
M. C.
,
Sen
,
M.
, and
Gad-el-Hak
,
M.
, 1998, “
Thermal Aspects of a Novel Viscous Pump
,”
J. Heat Transfer
0022-1481,
120
, pp.
99
107
.
53.
Decourtye
,
D.
,
Sen
,
M.
, and
Gad-el-Hak
,
M.
, 1998, “
Analysis of Viscous Micropumps and Microturbines
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
10
, pp.
13
25
.
54.
Abdelgawad
,
M.
,
Hassan
,
I.
, and
Esmail
,
N.
, 2004, “
Transient Behavior of the Viscous Micropump
,”
Microscale Thermophys. Eng.
1089-3954,
8
(
4
), pp.
361
381
.
55.
Phutthavong
,
P.
, and
Hassan
,
I.
, 2004, “
Transient Performance of Flow Over a Rotating Object Placed Eccentrically Inside a Microchannel—Numerical Study
,”
Microfluidics and Nanofluidics
,
1
(
1
), pp.
71
85
.
56.
Frechette
,
L. G.
,
Lee
,
C.
,
Arslan
,
S.
, and
Liu
,
Y.-C.
, 2003, “
Design of a Microfabricated Rankine Cycle Steam Turbine for Power Generation
,”
Proc. ASME International Mechanical Engineering Congress
, Nov. 15–21, Washington, DC, Micro–Electromechanical Systems Division Publication (MEMS), Vol.
5
, Micro-Electro-Mechanical Systems (MEMS), IMECE2003-42082, pp.
335
344
.
57.
Kilani
,
M. I.
,
Galambos
,
P. C.
,
Haik
,
Y. S.
, and
Chen
,
C.-J.
, 2003, “
Design and Analysis of a Surface Micromachined Spiral-Channel Viscous Pump
,”
ASME J. Fluids Eng.
0098-2202,
125
(
2
), pp.
339
344
.
58.
Sugiyama
,
S.
, and
Toriyama
,
T.
, 2003, “
Design of a Micro Reciprocating Engine for Power Generataion
,”
IEE J. Trans. Sensors and Micromachines
,
123
(
9
), pp.
351
356
.
59.
Jacobson
,
S. A.
, and
Epstein
,
A. H.
, 2003, “
An Informal Survey of Power MEMS
,”
Proc. JSME International Symposium on Micro-Mechanical Engineering
, Dec. 1–3, Tsuchiura and Tsukuba, Japan, ISMME2003-K18.
60.
Epstein
,
A. H.
, 2003, “
Millimeter-Scale, MEMS Gas Turbine Engines
,”
Proc. ASME 2003 Turbo Expo: Power for Land, Sea, and Air
, June 16–19, Atlanta, GA, ASME/IGTI Publication, Vol.
4
, Scholar Lecture, GT2003-38866, pp.
669
696
.
61.
Isomura
,
K.
,
Murayama
,
M.
,
Yamaguchi
,
H.
,
Ijichi
,
N.
,
Saji
,
N.
,
Shiga
,
O.
,
Takahashi
,
K.
,
Tanaka
,
S.
,
Genda
,
T.
, and
Esashi
,
M.
, 2002, “
Development of Microturbocharger and Microcombustor for a Three-Dimensional Gas Turbine at Microscale
,”
Proc. ASME 2002 Turbo Expo: Power for Land, Sea, and Air
, June 3–6, Amsterdam, Netherlands, ASME/IGTI Publication, Vol.
1
, GT2002-30580, pp.
1127
1134
.
62.
Mehra
,
A.
,
Zhang
,
X.
,
Ayon
,
A. A.
,
Waitz
,
I. A.
,
Schmidt
,
M. A.
, and
Spadaccini
,
C. M.
, 2000, “
A Six-Wafer Combustion System for A Silicon Micro Gas Turbine Engine
,”
J. Microelectromech. Syst.
1057-7157,
9
(
4
), pp.
517
527
.
63.
Spadaccini
,
C. M.
,
Lee
,
J.
,
Lukachko
,
S.
,
Waitz
,
I. A.
,
Mehra
,
A.
, and
Zhang
,
X.
, 2002, “
High Power Density Silicon Combustion Systems for Micro Gas Turbine Engines
,”
Proc. ASME 2002 Turbo Expo: Power for Land, Sea, and Air
, June 3–6, Amsterdam, Netherlands, ASME/IGTI Publication, Vol.
1
, GT2002-30082, pp.
469
481
.
64.
Whalen
,
S. A.
,
Weiss
,
L. W.
,
Richards
,
C. D.
,
Bahr
,
D. F.
, and
Richards
,
R. F.
, 2003, “
Characterization of the Thermodynamic Working Cycle in a MEMS-Based Micro Heat Engine
,”
Proc. ASME International Mechanical Engineering Congress and Exposition
, Nov. 15–21, Washington, DC, Micro-Electromechanical Systems Division Publication (MEMS), Vol.
5
, Micro-Electro-Mechanical Systems (MEMS), IMECE2003-41426, pp.
701
707
.
65.
Whalen
,
S.
,
Thompson
,
M.
,
Bahr
,
D.
,
Richards
,
C.
, and
Richards
,
R.
, 2003, “
Design, Fabrication and Testing of the P3 Micro Heat Engine
,”
Sens. Actuators, A
0924-4247,
104
, pp.
290
298
.
66.
Park
,
D.-E.
,
Lee
,
D.-H.
,
Yoon
,
J.-B.
,
Kwon
,
S.
, and
Yoon
,
E.
, 2002, “
Design and Fabrication of Micromachined Internal Combustion Engine as a Power Source for Microsystems
,”
Proc. IEEE 15th International Conference on Micro Electro Mechanical Systems (MEMS)
, June 20–24, Las Vegas, NV,
IEEE
, MEMSYS.2002.984255, pp.
272
275
.
67.
Kirtas
,
M.
,
Disseau
,
M.
,
Scarborough
,
D.
,
Jaqoda
,
T.
, and
Menon
,
S.
, 2002, “
Combustion Dynamics in a High Aspect Ratio Engine
,”
Proc. Combust. Inst.
1540-7489,
29
(
1
), pp.
917
923
.
68.
Aichlmayr
,
H. T.
,
Kittelson
,
D. B.
, and
Zachariah
,
M. R.
, 2002, “
Miniature Free-Piston Homogeneous Charge Compression Ignition Engine-Compressor Concept – Part I: Performance Estimation and Design Considerations Unique to Small Dimensions; Part II – Modeling HCCI Combustion in Small Scales With Detailed Homogeneous Gas Phase Chemical Kinetics
,”
Chem. Eng. J.
0300-9467,
57
, pp.
4161
4186
.
69.
Fu
,
K.
,
Knobloch
,
A. J.
,
Martinez
,
F. C.
,
Walther
,
D. C.
,
Fernandez-Pello
,
C.
,
Pisano
,
A. P.
, and
Liepmann
,
D.
, 2001, “
Design and Experimental Results of Small-Scale Rotary Engines
,”
Proc. ASME International Mechanical Engineering Congress and Exposition
, Nov. 11–16, New York, NY, ASME Advanced Energy Systems Division Publication, IMECE2001, Vol.
41
, pp.
295
301
.
70.
Heppner
,
J. D.
,
Walther
,
D. C.
, and
Pisano
,
A. P.
, 2003, “
Leakage Flow Analysis for a MEMS Rotary Engine
,”
Proc. ASME International Mechanical Engineering Congress and Exposition
, Nov. 15–21, Washington, DC, Micro-Electromechanical Systems Division Publication (MEMS), Vol.
5
, Micro-Electro-Mechanical Systems (MEMS), IMECE2003-41868, pp.
327
334
.
71.
Lee
,
C. H.
,
Jiang
,
K. C.
,
Jin
,
P.
, and
Prewett
,
P. D.
, 2004, “
Design and Fabrication of a Micro Wankel Engine Using MEMS Technology
,”
Microelectron. Eng.
0167-9317,
73–74
, pp.
529
534
.
72.
Sensirion: The Sensor Company, www.sensirion.comwww.sensirion.com, current February 2005.
73.
Wu
,
S.
,
Lin
,
Q.
,
Yuen
,
Y.
, and
Tai
,
Y.-C.
, 2001, “
MEMS Flow Sensors for Nano-Fluidic Applications
,”
Sens. Actuators, A
0924-4247,
89
, pp.
152
158
.
74.
Yoshino
,
T.
,
Suzuki
,
Y.
,
Kasagi
,
N.
, and
Kamjunten
,
S.
, 2001, “
Assessment of the Wall Shear Stress Measurement With Arrayed Micro Hot-Film Sensors in a Turbulent Channel Flow
,”
Proc. 2nd International Symposium on Turbulence and Shear Flow Phenomena
, June 27–29, Stockholm, Sweden, TSFP-2, Vol.
2
, pp.
153
158
.
75.
Yoshino
,
T.
,
Suzuki
,
Y.
,
Kasagi
,
N.
, and
Kamiunten
,
S.
, 2003, “
Optimum Design of Micro Thermal Flow Sensor and Its Evaluation in Wall Shear Stress Measurement
,”
Proc. IEEE 6th International Conference on Micro Electro Mechanical Systems (MEMS)
, Jan. 19–23, Kyoto, Japan,
IEEE
, MEMSYS.2003.1189719, pp.
193
196
.
76.
Lee
,
C.-Y.
, and
Lee
,
G.-B.
, 2003, “
MEMS-Based Humidity Sensors With Integrated Temperature Sensors for Signal Drift Compensation
,”
Proc. IEEE 2nd Conference on Sensors: IEEE Sensors 2003
, Oct. 22–24, Toronto, Canada,
IEEE
, Vol.
1
, ICSENS.2003.1278963, pp.
384
388
.
77.
Henning
,
A. K.
,
Mourlas
,
N.
,
Metz
,
S.
, and
Zias
,
A.
, 2002, “
A MEMS-Based, High-Sensitivity Pressure Sensor for Ultraclean Semiconductor Applications
,”
Proc. IEEE/SEMI Conference and Workshop of Advanced Semiconductor Manufacturing
, April 30–May 2, Boston, MA,
IEEE
, ASMC.2002.1001596, pp.
165
168
.
78.
Oh
,
S. H.
,
Lee
,
K.-C.
,
Chun
,
J.
,
Kim
,
M.
, and
Lee
,
S. S.
, 2001, “
Micro Heat Flux Sensor Using Copper Electroplating in Su-8 Microstructures
,”
J. Micromech. Microeng.
0960-1317,
11
, pp.
221
225
.
79.
Wong
,
S. H.
,
Ward
,
M. C. L.
, and
Wharton
,
C. W.
, 2004, “
Micro T-Mixer as a Rapid Mixing Micromixer
,”
Sens. Actuators B
0925-4005,
100
, pp.
359
379
.
80.
Lin
,
C.-H.
,
Fu
,
L.-M.
, and
Chien
,
Y.-S.
, 2004, “
Microfluidic T-Form Mixer Utilizing Switching Electroosmotic Flow
,”
Anal. Chem.
0003-2700,
76
, pp.
5265
5272
.
81.
Nguyen
,
N. T.
, and
Wu
,
Z.
, 2005, “
Micromixers – A Review
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
R1
R16
.
82.
Bau
,
H. H.
,
Zhong
,
J.
, and
Yi
,
M.
, 2001, “
A Minute Magneto Hydro Dynamic (MHD) Mixer
,”
Sens. Actuators B
0925-4005,
79
(
2–3
), pp.
207
215
.
83.
Lu
,
L. H.
,
Ryu
,
K. S.
, and
Liu
,
C. J.
, 2002, “
A Magnetic Microstirrer and Array for Microfluidic Mixing
,”
J. Microelectromech. Syst.
1057-7157,
11
(
5
), pp.
462
469
.
84.
Rong
,
R.
,
Choi
,
J. W.
, and
Ahn
,
C. H.
, 2003, “
A Functional Magnetic Bead/Biocell Sorter Using Fully Integrated Magnetic Micro/Nano Tips
,”
Proc. IEEE 16th Micro Electro Mechanical Systems (MEMS)
, Jan. 19–23, Kyoto, Japan,
IEEE
, MEMSYS.2003.1189803, pp.
530
533
.
85.
Vivek
,
V.
,
Zeng
,
Y.
, and
Kim
,
E. S.
, 2000, “
Novel Acoustic-Wave Micromixer
,”
Proc. IEEE 13th International Conference on Micro Electro Mechanical Systems (MEMS)
, Jan. 23–27, Miyazaki, Japan,
IEEE
, MEMSYS.2000.838598, pp.
668
673
.
86.
Rife
,
J. C.
,
Bell
,
M. I.
,
Horwitz
,
J. S.
,
Kabler
,
M. N.
,
Auyueng
,
R. C. Y.
, and
Kim
,
W. J.
, 2000, “
Miniature Valveless Ultrasonic Pumps and Mixers
,”
Sens. Actuators, A
0924-4247
86
(
1–2
), pp.
135
140
.
87.
Yang
,
Z.
,
Matsumoto
,
S.
,
Goto
,
H.
,
Matsumoto
,
M.
, and
Maeda
,
R.
, 2001, “
Ultrasonic Micromixer for Microfluidic Systems
,”
Sens. Actuators, A
0924-4247,
93
(
3
), pp.
266
272
.
88.
Miyake
,
R.
,
Lammerink
,
T. S. J.
,
Elwenspoek
,
M.
, and
Fluitman
,
J. H. J.
, 1993, “
Micro Mixer With Fast Diffusion
,”
Proc. IEEE 6th International Conference on Micro Electro Mechanical Systems
, Feb 7–10, Fort Lauderdale, FL,
IEEE
, MEMSYS.1993.296914, pp.
248
253
.
89.
Voldman
,
J.
,
Gray
,
M. L.
, and
Schmidt
,
M. A.
, 2000, “
Integrated Liquid Mixer/Valve
,”
J. Microelectromech. Syst.
1057-7157,
9
(
3
), pp.
295
302
.
90.
He
,
B.
,
Burke
,
B. J.
,
Zhang
,
X.
,
Zhang
,
R.
, and
Regnier
,
R. E.
, 2001, “
A Picoliter-Volume Mixer for Microfluidic Analytical Systems
,”
Anal. Chem.
0003-2700,
73
(
9
), pp.
1942
1947
.
91.
Knight
,
J. B.
,
Vishwanath
,
A.
,
Brody
,
J. P.
, and
Austin
,
R. H.
, 1998, “
Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds
,”
Phys. Rev. Lett.
0031-9007,
80
(
17
), pp.
3863
3866
.
92.
Wong
,
S. H.
,
Bryant
,
P.
,
Ward
,
M.
, and
Wharton
,
C.
, 2003, “
Investigation of Mixing in a Cross-Shaped Micromixer With Static Mixing Elements for Reaction Kinetics Studies
,”
Sens. Actuators B
0925-4005,
95
(
1–3
), pp.
414
424
.
93.
Bökenkamp
,
D.
,
Desai
,
A.
,
Yang
,
X.
,
Tai
,
Y. C.
,
Marzluff
,
E. M.
, and
Mayo
,
S. L.
, 1998, “
Microfabricated Silicon Mixers for Submillisecond Quenching Flow Analysis
,”
Anal. Chem.
0003-2700,
70
, pp.
232
236
.
94.
Gobby
,
D.
,
Angeli
,
P.
, and
Gavriilidis
,
A.
, 2001, “
Mixing Chacteristics of T-Type Microfluidic Mixers
,”
J. Micromech. Microeng.
0960-1317,
11
(
2
), pp.
126
132
.
95.
Engler
,
M.
,
Kockmann
,
N.
,
Kiefer
,
T.
, and
Woias
,
P.
, 2000, “
Numerical and Experimental Investigations on Liquid Mixing in Static Micromixers
,”
Chem. Eng. J.
0300-9467,
101
(
1–3
), pp.
315
322
.
96.
Cahill
,
D. G.
,
Goodson
,
K.
, and
Majumdar
,
A.
, 2002, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
J. Heat Transfer
0022-1481,
124
, pp.
223
241
.
97.
Gu
,
Y. Q.
,
Ruan
,
X. L.
,
Han
,
L.
,
Zhu
,
D. Z.
, and
Sun
,
X. Y.
, 2002, “
Imaging of Thermal Conductivity With Sub-Micrometer Resolution Using Scanning Thermal Microscopy
,”
Int. J. Thermophys.
0195-928X,
23
(
4
), pp.
1115
1123
.
98.
Fletcher
,
D. A.
,
Crozier
,
K. B.
,
Quate
,
C. F.
,
Kino
,
G. S.
,
Goodson
,
K. E.
,
Simanovskii
,
D.
, and
Palanker
,
D. V.
, 2000, “
Near-Field Infrared Imaging With a Microfabricated Solid Immersion Lens
,”
Appl. Phys. Lett.
0003-6951,
77
, pp.
2109
2111
.
99.
Aligoodarz
,
M. R.
,
Yan
,
Y.
, and
Kenning
,
D. B. R.
, 1998, “
Wall Temperature and Pressure Variation During Flow Boiling in Narrow Channels
,”
Proc. 11th International Heat Transfer Conference (IHTC)
, Aug. 23–28, Kyongju, Korea, Taylor and Francis Corp., Vol.
2
, pp.
225
230
.
100.
Hohmann
,
C.
, and
Stephan
,
P.
, 2002, “
Microscale Temperature Measurement at an Evaporating Liquid Meniscus
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
157
162
.
101.
Muwanga
,
R. S.
, and
Hassan
,
I.
, 2005, “
Local Heat Transfer Measurements in Micro Geometries Using Liquid Crystal Thermography
,”
Proc. ASME 3rd International Conference on Microchannels and Minichannels
, June 13–15, Toronto, CA,
ASME
,
PART A
, ICNMM2005-75019, pp.
217
224
.
102.
Lakshminarasimhan
,
M. S.
,
Hollingsworth
,
D. K.
, and
Witte
,
L. C.
, 2000, “
Boiling Incipience in Narrow Channels
,”
Proc. ASME International Mechanical Engineering Congress and Exposition
, Nov. 5–10, Orlando, FL, ASME Heat Transfer Division Publication, HTD-366-4 (IMECE2000, Vol.
4
), pp.
55
63
.
103.
Hapke
,
I.
,
Boye
,
H.
, and
Schmidt
,
J.
, 2000, “
Onset of Nucleate Boiling in Minichannels
,”
Int. J. Therm. Sci.
1290-0729,
39
, pp.
505
513
.
104.
Hetsroni
,
G.
,
Gurevich
,
M.
,
Mosyak
,
A.
, and
Rozenblit
,
R.
, 2003, “
Surface Temperature Measurement of a Heated Capillary Tube By Means of a Infrared Technique
,”
Meas. Sci. Technol.
0957-0233,
14
, pp.
807
814
.
105.
Narayanan
,
V.
, 2003, “
Temperature Measurements and Surface Visualization in Microchannel Flows Using Infrared Thermography
,”
Proc. ASME 1st International Conference on Microchannels and Minichannels
, April 24–25, Rochester, NY,
S.
Kandlikar
, ed.,
ASME
, ICMM2003-1117, pp.
879
886
.
106.
Diaz
,
M. D.
,
Boye
,
H.
,
Hapke
,
I.
,
Schmidt
,
J.
,
Staate
,
Y.
, and
Zhekov
,
Z.
, 2004, “
Flow Boiling in Mini and Microchannels
,”
Proc. ASME 2nd International Conference on Microchannels and Minichannels
, June 17–19, Rochester, NY,
S.
Kandlikar
, ed.,
ASME
, ICMM2004-2367, pp.
445
451
.
107.
Kim
,
H. J.
,
Kihm
,
K. D.
, and
Allen
,
J. S.
, 2003, “
Examination of Ratiometric Laser Induced Fluorescence Thermometry for Microscale Spatial Measurement Resolution
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3967
3974
.
108.
Bonjour
,
J.
, and
Lallemand
,
M.
, 1998, “
Flow Patterns During Boiling in a Narrow Space Between Two Vertical Surfaces
,”
Int. J. Multiphase Flow
0301-9322,
24
, pp.
947
960
.
109.
Owhaib
,
W.
, and
Palm
,
B.
, 2004, “
Experimental Investigation of Single-Phase Convective Heat Transfer in Circular Microchannnels
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
105
110
.
110.
OMEGA Engineering
, 2002,
The OMEGA Made in the USA Handbook
, Vol.
I
,
Omega Engineering
, Stamford, CT.
111.
Kovacs
,
G. T. A.
, 1998,
Micromachined Transducers Sourcebook
,
McGraw-Hill
, New York.
112.
Liu
,
C. W.
,
Gau
,
C.
, and
Dai
,
B. T.
, 2004, “
Design and Fabrication Development of a Micro Flow Heated Channel With Measurements of the Inside Micro-Scale Flow and Heat Transfer Process
,”
Biosens. Bioelectron.
0956-5663,
20
, pp.
91
101
.
113.
Koutsiaris
,
A. G.
,
Mathioulakis
,
D. S.
, and
Tsangaris
,
S.
, 1999, “
Microscope PIV for Velocity-Field Measurement of Particle Suspensions Flowing Inside Glass Capillaries
,”
Meas. Sci. Technol.
0957-0233,
10
(
11
), pp.
1037
1046
.
114.
Meinhart
,
C. D.
,
Werely
,
S. T.
, and
Santiago
,
J. G.
, 1999, “
PIV Measurements of Micro Channel Flow
,”
Exp. Fluids
0723-4864,
27
, pp.
414
419
.
115.
Kinoshita
,
H.
,
Oshima
,
M.
,
Hong
,
J.-W.
,
Fujii
,
T.
,
Saga
,
T.
, and
Kobayashi
,
T.
, 2003, “
PIV Measurement of Pressure and Electro Kinetically Driven Flow in Micro Channels
,”
Proc. SPIE
0277-786X,
5058
, pp.
113
118
.
117.
Sinton
,
D.
,
Erickson
,
D.
, and
Li
,
D.
, 2003, “
Micro Bubble Lensing Induced Photo-Bleaching (μ-BLIP) With Application to Micro Flow Visualization
,”
Exp. Fluids
0723-4864,
35
, pp.
178
187
.
118.
Pooran
,
R.
,
Kim
,
J.-W.
,
Tung
,
S.
,
Malshe
,
A.
, and
Lee
,
C. C.
, 2003,
A Cellular Motor Based Micro Pump – Integration of Cellular Motors With Micro Channels
,
Proc. ASME International Mechanical Engineering Congress and Exposition
, Nov. 15–21, Washington, DC, Micro-Electromechanical Systems Division Publication (MEMS), Vol.
5
, Micro-Electro-Mechanical Systems (MEMS), IMECE2003-41545, pp.
495
499
.
119.
Morini
,
G. L.
, 2004, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
1290-0729,
43
(
7
), pp.
613
651
.
120.
Lin
,
S.
,
Kew
,
P. A.
, and
Cornwell
,
K.
, 2001, “
Flow Boiling of Refrigerant R141B in Small Tubes
,”
Chem. Eng. Res. Des.
0263-8762,
79
(
4
), pp.
417
424
.
You do not currently have access to this content.