Abstract

A particular inverse design problem is proposed as a benchmark for comparison of five solution techniques used in design of enclosures with radiating sources. The enclosure is three-dimensional and includes some surfaces that are diffuse and others that are specular diffuse. Two aspect ratios are treated. The problem is completely described, and solutions are presented as obtained by the Tikhonov method, truncated singular value decomposition, conjugate gradient regularization, quasi-Newton minimization, and simulated annealing. All of the solutions use a common set of exchange factors computed by Monte Carlo, and smoothed by a constrained maximum likelihood estimation technique that imposes conservation, reciprocity, and non-negativity. Solutions obtained by the various methods are presented and compared, and the relative advantages and disadvantages of these methods are summarized.

References

1.
Alifanov
,
O. M.
, 1994,
Inverse Heat Transfer Problems
,
Springer
, Berlin.
2.
Alifanov
,
O. M.
,
Artyukhin
,
E. A.
, and
Rumyantsev
,
S. V.
, 1995,
Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems
,
Begell House
, New York.
3.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
, Jr.,
C. R.
, 1995,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley
, New York.
4.
Özişik
,
M. N.
, and
Orlande
,
H. R. B.
, 2000,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor and Francis
, New York.
5.
Tikhonov
,
A. N.
, 1963, “
Solution of Incorrectly Formulated Problems and the Regularization Method
,”
Sov. Math. Dokl.
0197-6788,
4
, pp.
1035
1038
Tikhonov
,
A. N.
, (Engl. trans.,
Dokl. Akad. Nauk SSSR
0002-3264,
151
, pp.
501
504
, 1963).
6.
França
,
F. H. R.
,
Howell
,
J. R.
,
Ezekoye
,
O. A.
, and
Morales
,
J. C.
, 2002, “
Inverse Design of Thermal Systems
,”
Advances in Heat Transfer
,
J. P.
Hartnett
and
T. F.
Irvine
, eds.,
Elsevier
, New York, Vol.
36
, Chap. 1, pp.
1
110
.
7.
Daun
,
K. J.
,
Ertürk
,
H.
, and
Howell
,
J. R.
, 2003, “
Inverse Design Methods for High-Temperature Systems
,”
Arabian J. Sci. Tech.
,
27
(
2C
), pp.
3
48
.
8.
França
,
F. H. R.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
, 2001, “
Inverse Boundary Design Combining Radiation and Convection Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
123
(
5
), pp.
884
891
.
9.
Daun
,
K. J.
,
Ertürk
,
H.
,
Gamba
,
M.
,
Hosseini Sarvari
,
M.
, and
Howell
,
J. R.
, 2003, “
The Use of Inverse Methods for the Design and Control of Radiant Sources
,”
JSME Int. J., Ser. B
1340-8054,
46
(
4
), pp.
470
478
.
10.
Daun
,
K. J.
, and
Howell
,
J. R.
, 2005, “
Inverse Design Methods for Radiative Transfer Systems
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
93
, pp.
43
60
.
11.
Gamba
,
M.
,
Pavy
,
T.
, and
Howell
,
J. R.
, 2003, “
Inverse Methods for Design and Control of Thermal Systems: Validation in a 2-D Visible Light Enclosure
,”
Proc. 2003 IMECE
,
Washington
, DC, ASME, New York, Paper IMECE-42987.
12.
Gamba
,
M.
,
Erturk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
, 2002, “
Modeling of a Radiative RTP-Type Production Furnace Through Inverse Design: Mathematical Model and Experimental Results
,”
Proc. 2002 IMECE
,
New Orleans
, ASME, New York, Vol.
1
.
13.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes
,
Cambridge University Press
, Cambridge, England.
14.
Hansen
,
P. C.
, 1998,
Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion
,
SIAM
, Philadelphia.
15.
Beckman
,
F. S.
, 1960, “
The Solution of Linear Equations by the Conjugate Gradient Method
,”
Mathematical Methods For Digital Computers
,
A.
Ralston
and
H. S.
Wilf
, eds.,
Wiley
, New York, pp.
62
72
.
16.
Bertsekas
,
D. P.
, 1999,
Nonlinear Programming
, 2nd ed.,
Athena Scientific
, Belmont, MA.
17.
Metropolis
,
N.
,
Rosenbluth
,
A.
,
Rosenbluth
,
M.
,
Teller
,
A.
, and
Teller
,
E.
, 1953, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
0021-9606,
21
, pp.
1087
1090
.
18.
Daun
,
K. J.
,
Morton
,
D. P.
, and
Howell
,
J. R.
, 2005, “
Smoothing Monte Carlo Exchange Factors Through Constrained Maximum Likelihood Estimation
,”
ASME J. Heat Transfer
0022-1481,
127
(
10
), pp.
1124
1128
.
19.
Howell
,
J. R.
, and
Daun
,
K. J.
, 2004, “
Inverse Design in Thermal Radiation Problems
,”
Proc. Inverse Problems, Design, and Optimization Symposium
, Rio de Janeiro, Brazil, March.
20.
Corana
,
A.
,
Marchesi
,
M.
,
Martini
,
C.
, and
Ridella
,
S.
, 1987, “
Minimizing Multimodal Functions of Continuous Variables With the ‘Simulated Annealing Algorithm’
,”
ACM Trans. Math. Softw.
0098-3500,
13
, pp.
262
280
.
21.
Goffe
,
W. L.
,
Ferrier
,
G.
, and
Rogers
,
J.
, 1994, “
Global Optimization of Statistical Functions With Simulated Annealing
,”
J. Econometr.
0304-4076,
60
(
1∕2
), pp.
65
100
.
22.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
, 2002, “
The Application of an Inverse Formulation in the Design of Boundary Conditions for Transient Radiating Enclosures
,”
ASME J. Heat Transfer
0022-1481,
124
(
6
), pp.
1095
1102
.
23.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
, 2002, “
The Use of Inverse Formulation in Design and Control of Transient Thermal Systems
,”
Heat Transfer 2002: Proc. International Heat Transfer Conf.
, Grenoble, Taine, J., ed. (CDRom Version), pp.
729
734
.
You do not currently have access to this content.