Motivated by heat transfer and environmental concerns, a study of flame radiation and soot particulate emission is reported for partial premixing in low strain-rate (<20s1) methane counterflow flames. Temperature, OH concentration, and soot volume fraction distributions were measured along the stagnation streamline for progressive addition of oxygen to methane. These measurements along with an optically thin model for soot and gas radiation were used to study the effect of partial premixing on flame radiation and soot emission. It was found that with progressive partial premixing, the peak soot loading and the thickness of the soot zone first decreased and then increased, and while the gas radiation was enhanced, the gas radiative fraction (gas radiation per unit chemical energy release) showed a systematic decrease. The net radiative fraction (soot+gas), however, first decreased and then increased. A configuration with the soot zone spatially entrapped between the premixed and non-premixed reaction zones was experimentally found. This flame configuration has the potential to enhance radiative heat transfer while simultaneously reducing soot and NOx emissions.

1.
Carrier
,
G. F.
,
Fendell
,
F. E.
, and
Marble
,
F. E.
, 1974,
SIAM J. Appl. Math.
0036-1399,
28
(
2
), pp.
463
500
.
2.
Peters
,
N.
, 1986, “
Laminar Flamelet Concepts in Turbulent Combustion
,”
Proc. Combust. Inst.
,
Combustion Institute
,
Philadephia
, Vol.
21
, pp.
1231
1250
.
3.
Yamaoka
,
I.
, and
Tsuji
,
H.
, 1974, “
Flame Structure of Rich Methane Air Counter Flow Flame
,”
Proc. Combustion Inst.
,
Combustion Institute
,
Philadelphia
, Vol.
15
, pp.
637
644
.
4.
Yamaoka
,
I.
, and
Tsuji
,
H.
, 1977, “
Flame Structure of Rich Methane Air Counter Flow Flame
,”
Proc. Combustion Inst.
,
Combustion Institute
,
Philadelphia
, Vol.
16
, pp.
1145
1154
.
5.
Atreya
,
A.
,
Zhang
,
C.
,
Kim
,
H. K.
,
Shamim
,
T.
, and
Suh
,
J.
, 1996, “
The Effect of Changes in the Flame Structure on Formation and Destruction of Soot and NOx in Radiating Diffusion Flames
,”
Proc. Combustion Inst.
,
Combustion Institute
,
Philadelphia
, Vol.
26
, pp.
2181
2189
.
6.
Chakraborty
,
B. B.
, and
Long
,
R.
, 1968, “
The Formation of Soot in Diffusion Flames: III
,”
Combust. Flame
0010-2180,
12
, pp.
469
476
.
7.
Wey
,
C.
,
Powell
,
E. I.
, and
Jagoda
,
J. I.
, 1985, “
The Effect on Soot Formation of Oxygen in the Fuel of a Diffusion Flame
,”
Proc. Combustion Institute
,
Combustion Institute
,
Philadelphia
, Vol.
20
, pp.
1017
1024
.
8.
Saito
,
K.
,
Williams
,
F. A.
, and
Gordon
,
A. S.
, 1986, “
Effects of Oxygen on Soot Formation in Methane Diffusion Flames
,”
Combust. Sci. Technol.
0010-2202,
47
, pp.
117
138
.
9.
Hura
,
H. S.
, and
Glassman
,
I.
, 1987, “
Fuel Oxygen Effects on Soot Formation in Counterflow Diffusion Flames
,”
Combust. Sci. Technol.
0010-2202,
53
, pp.
1
21
.
10.
Hura
,
H. S.
, and
Glassman
,
I.
, 1988, “
Soot Formation in Diffusion Flames of Fuel/Oxygen Mixtures
,”
Proc. Combustion Institute
,
Combustion Institute
,
Philadelphia
, Vol.
22
, pp.
371
378
.
11.
Du
,
D. X.
,
Axelbaum
,
R. L.
, and
Law
,
C. K.
, 1989, “
Experiments on the Sooting Limits of Aerodynamically-Strained Diffusion Flames
,”
Proc. Combustion Institute
,
Combustion Institute
,
Philadelphia
, Vol.
22
, p.
1501
.
12.
Peters
,
N.
, 1994,
Soot Formation in Combustion
,
Chemical Physics 59
,
H.
Bockhorn
, ed.,
Springer-Verlag
, Berlin, pp.
325
349
.
13.
Guilder
,
O. L.
, 1995, “
Effects of Oxygen on Soot Formation in Methane, Propane, and n-Butane Diffusion Flames
,”
Combust. Flame
0010-2180,
101
(
4
), pp.
302
310
.
14.
Hwang
,
J. Y.
,
Chung
,
S. H.
, and
Lee
,
W.
, 1998, “
Effects of Oxygen Addition on Soot Formation in Counter-Flow Ethylene Flames and the Role of C3 Chemistry
,”
Proc. Combustion Institute
,
Combustion Institute
,
Philadelphia
, Vol.
27
, pp.
1531
1538
.
15.
Mitrovich
,
A.
, and
Lee
,
T. W.
, 1998, “
Soot Formation Characteristics of Laminar Partially Premixed Flames
,”
Combust. Flame
0010-2180,
115
(
4
), pp.
437
442
.
16.
McEnally
,
C. S.
, and
Pfeffrele
,
L. D.
, 2000, “
Experimental Study of Non-Fuel Hydrocarbons and Soot in Coflowing Partially Premixed Ethylene/Air Flames
,”
Combust. Flame
0010-2180,
121
(
3
), pp.
575
593
.
17.
McEnally
,
C. S.
, and
Pfeffrele
,
L. D.
, 1999, “
Experimental Study of Non-Fuel Hydrocarbon Concentrations in Coflowing Partially Premixed Methane/Air Flames
,”
Combust. Flame
0010-2180,
118
(
4
), pp.
619
632
.
18.
Peters
,
N.
, and
Pels Leudsen
,
C.
, 2000, “
Experimental and Numerical Analysis of the Influence of Oxygen on Soot Formation in Laminar Counterflow Flames of Acetylene
,”
Proc. Combustion Inst.
,
Combustion Institute
, Philadelphia, Vol.
28
,
2619
2625
.
19.
Mungekar
,
H. P.
, and
Atreya
,
A.
, 2000, “
Flame Structure of Partially Premixed Flames
,” 34th NHTC, Pittsburgh, ASME Paper No. 2000-12316.
20.
Mungekar
,
H. P.
, and
Atreya
,
A.
, 2001, “
Soot Radiation and Soot Emission Control in Partially Premixed Flames
,” 35th NHTC, Anaheim, ASME, Paper No. 2001-14316.
21.
Mungekar
,
H. P.
,
Atreya
,
A.
, and
Everest
,
D.
, 2003, “
Flow Visualization Using Particle Track Imaging in Sooty Laminar Flames
,”
J. Flow Visualization Image Process.
1065-3090,
10
, pp.
1
15
.
22.
Mungekar
,
H. P.
, and
Atreya
,
A.
, 2006, “
Effect of Partial Premixing on Sooting Structure of Methane Flames
,”
Combust. Flame
0010-2180,
144
, pp.
336
348
.
23.
Zhu
,
J.
,
Irerra
,
A.
,
Choi
,
M. Y.
,
Mullohard
,
G. W.
,
Gritzo
,
L.
, and
Suo-Antilla
,
J.
, 2004, “
Measurement of Light Extinction Coefficient of JP-8 Soot in Visible and Near IR Spectrum
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3643
3648
.
24.
Smyth
,
K. C.
, and
Shaddix
,
C. R.
, 1996, “
The Elusive History of m=1.57−0.56i for RI of Soot
,”
Combust. Flame
0010-2180,
107
, pp.
314
320
.
25.
Lutz
,
A. E.
,
Kee
,
R. J.
,
Grcar
,
J. F.
, and
Rupley
,
F. M.
, 1996, Report No. SAND96-8243,
Sandia National Laboratories
.
27.
Kim
,
H. K.
, 1998, Ph.D. thesis, University of Michigan, Ann Arbor.
28.
Abu-Romia
,
M. M.
, and
Tien
,
C. L.
, 1967, “
Appropriate Mean Absorption Coefficient for Infrared Radiation of Gases
,”
ASME J. Heat Transfer
0022-1481,
89
, pp.
321
327
.
29.
Atreya
,
A.
, and
Agrawal
,
S.
, 1998, “
Effect of Radiative Heat Loss on Diffusion Flames in Quiescent Microgravity Atmosphere
,”
Combust. Flame
0010-2180,
115
(
3
), pp.
372
382
.
30.
Grosshandler
,
W. L.
, 1993, “
RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion Environment
,” NIST Technical Note 1402.
You do not currently have access to this content.