Glow discharge at atmospheric pressure using a dielectric barrier discharge can induce fluid flow, and can be used for active control of aerodynamics and heat transfer. In the present work, a modeling framework is presented to study the evolution and interaction of such athermal nonequilibrium plasma discharges in conjunction with low Mach number fluid dynamics and heat transfer. The model is self-consistent, coupling the first-principles-based discharge dynamics with the fluid dynamics and heat transfer equations. Under atmospheric pressure, the discharge can be simulated using a plasma–fluid instead of a kinetic model. The plasma and fluid species are treated as a two-fluid system coupled through force and pressure interactions, over decades of length and time scales. The multiple-scale processes such as convection, diffusion, and reaction/ionization mechanisms make the transport equations of the plasma dynamics stiff. To handle the stiffness, a finite-volume operator-split algorithm capable of conserving space charge is employed. A body force treatment is devised to link the plasma dynamics and thermo-fluid dynamics. The potential of the actuator for flow control and thermal management is illustrated using case studies.

1.
Shyy
,
W.
,
Jayaraman
,
B.
, and
Anderson
,
A.
, 2002, “
Modeling of Glow-Discharge Induced Flow Dynamics
,”
J. Appl. Phys.
0021-8979,
92
(
11
), pp
6434
6443
.
2.
Roth
,
J. R.
,
Sherman
,
D. M.
, and
Wilkinson
,
S. P.
, 1998, “
Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge
,”
Proceedings 36th AIAA Aeropsace Sciences Meeting and Exhibit
,
Reno NV
, January 12–15 AIAA Paper No. 98-0328.
3.
Corke
,
T. C.
,
Jumper
,
E. J.
,
Post
,
M. L.
,
Orlov
,
D.
, and
Mclaughlin
,
T. E.
, 2003, “
Application of Weakly-Ionized Plasmas as Wing Flow-Control Devices
,”
Proceedings 41st Aerospace Sciences Meeting & Exhibit
,
Reno, NV
, Jan 6–9, AIAA Paper No. 2002-0350.
4.
Enloe
,
C. L.
,
Mclaughlin
,
T. E.
,
Van Dyken
,
R.
, and
Kachner
,
K. D.
, 2004, “
Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology
,”
AIAA J.
0001-1452,
42
(
3
), pp.
589
594
.
5.
Smith
,
B. L.
, and
Glezer
,
A.
, 1998, “
The Formation and Evolution of Synthetic Jets
,”
Phys. Fluids
1070-6631,
10
(
9
), pp.
2281
2297
.
6.
Van Dyken
,
R.
,
Mclaughlin
,
T. E.
, and
Enloe
,
C. L.
, 2004, “
Parametric Investigations of a Single Dielectric Barrier Plasma Actuator
,”
Proceedings 42nd Aerospace Sciences Meet & Exhibit
,
Reno, NV
, Jan 5–8, AIAA Paper No. 2004-846.
7.
Corke
,
T. C.
, and
Matlis
,
E.
, 2000, “
Phased Plasma Arrays for Unstaeady Flow Control
,”
Proceedings Fluids 2000
,
Denver, CO
, June 19–22, AIAA Paper No. 2000-2323.
8.
Post
,
M. L.
, and
Corke
,
T. C.
, 2003, “
Separation Control on High Angle of Attack Airfoil Using Plasma Actuators
,”
Proceedings 41st Aerospace Sciences Meeting & Exhibit
,
Reno, NV
, Jan 6–9, AIAA Paper No. 2003-1024.
9.
Chan
,
S.
, 2004 “
The Application of Plasma and Electrohydrodynamic Control to Subsonic Cavity Flows
,” personal communication.
10.
Soldati
,
A.
, and
Banerjee
,
S.
, 1998 “
Turbulence Modification by Large-scale Organized Electro-hydrodynamic flows
,”
Phys. Fluids
1070-6631,
10
(
7
), pp
1742
-
1756
.
11.
Segur
,
P.
, and
Massines
,
F.
, 2000, “
The Role of Numerical Modeling to Understand the Behavior and to Predict the Existence of an Atmospheric Pressure Glow Discharge Controlled by a Dielectric Barrier
,”
Proceedings of the 13th International Conference of Gas Discharges and Their Applications
,
Glasgow
, Sept. 3–8, pp.
15
24
.
12.
Gaitonde
,
D. V.
,
Visbal
,
M. R.
, and
Roy
,
S.
, 2005, “
Control of Flow Past a Wing Section With Plasma-Based Body Forces
,”
Proceedings 36th Plasma Dynamics and Lasers Conference
,
Toronto, Canada
, June 6–9, AIAA Paper No. 2005-5302.
13.
Jayaraman
,
B.
,
Thakur
,
S.
, and
Shyy
,
W.
, 2006, “
Modeling of Dielectric Barrier Discharge and Resulting Fluid Dynamics
,”
Proceedings 44th Aerospace Sciences Meeting
Reno, NV
, January 9–12, AIAA Paper No. 2006-0686.
14.
Riley
,
M. E.
,
Greenberg
,
K. E.
,
Hebner
,
G. A.
, and
Drallos
,
P.
, 1994 “
Theoretical and Experimental Study of Low-Temperature, Capacitiviley Coupled, Radio-Frequency Helium Plasmas
,”
J. Appl. Phys.
0021-8979,
75
(
6
), pp.
2789
2798
.
15.
Nitschke
,
T. E.
, and
Graves
,
D. B.
, 1994, “
A Comparison of Particle in Cell and Fluid Model Simulations of Low-Pressure Radio Frequency Discharges
,”
J. Appl. Phys.
0021-8979,
76
(
10
), pp.
5646
5660
.
16.
Kushner
,
M. J.
, 1985, “
Mechanisms for Power Deposition in Ar∕SiH4 Capacitively Coupled RF Discharges
,”
IEEE Trans. Plasma Sci.
0093-3813,
14
(
4
), pp.
188
195
.
17.
Massines
,
F.
,
Ben Gadri
,
R.
,
Rabehi
,
A.
,
Decomps
,
Ph.
,
Segur
,
P.
, and
Mayoux
,
Ch.
, 1998, “
Experimental and Theoretical Study of a Glow Discharge at Atmospheric Pressure Controlled by Dielectric Barrier
,”
J. Appl. Phys.
0021-8979,
83
(
6
), pp.
2950
2957
.
18.
Ben Gadri
,
R.
, 1999, “
One Atmospheric Glow Discharge Structure Revealed by Computer Modeling
,”
IEEE Trans. Plasma Sci.
0093-3813,
27
(
1
), pp.
36
37
.
19.
Hammond
,
E. P.
,
Mahesh
,
K.
, and
Moin
,
P.
, 2002, “
A Numerical Method to Simulate Radio-Frequency Plasma Discharges
,”
J. Comput. Phys.
0021-9991,
176
, pp.
402
429
.
20.
Colella
,
P.
,
Dorr
,
M. R.
, and
Wake
,
D. D.
, 1999, “
Numerical Solution of Plasma Fluid Equations Using Locally Refined Grids
,”
J. Comput. Phys.
0021-9991,
152
, pp.
550
583
.
21.
Colella
,
P.
,
Dorr
,
M. R.
, and
Wake
,
D. D.
, 1999, “
A Conservative Finite Difference Method for the Numerical Solution of Plasma Fluid Equations
,”
J. Comput. Phys.
0021-9991,
149
, pp.
168
193
.
22.
Roy
,
S.
, and
Gaitonde
,
D. V.
, 2005, “
Modeling Surface Discharge Effects of Atmospheric rf on Gas Flow Control
,”
Proceedings 43rd AIAA Aeropsace Sciences Meeting
,
Reno NV
, Jan 10–13, AIAA Paper No. 2005-0160.
23.
Roy
,
S.
, and
Gaitonde
,
D. V.
, 2005, “
Multidimensional Collisional Dielectric Barrier Discharge for Flow Separation Control at Atmospheric Pressures
,”
Proceedings 35th AIAA Fluid Dynamics Conference
,
Toronto, Canada
, June 6–9, AIAA Paper No. 2005-4631.
24.
Singh
,
K. P.
, and
Roy
,
S.
, 2005, “
Simulation of an Asymmetric Single Dielectric Barrier Plasma Actuator
,”
J. Appl. Phys.
0021-8979,
98
, p.
083303
.
25.
Cohen
,
S. D.
, and
Hindmarsh
,
A. C.
, 1996, “
CVODE, a Stiff/Nonstiff ODE Solver in C
,”
Comput. Phys.
0894-1866,
10
(
2
), pp.
138
143
.
26.
Verwer
,
J. G.
, 1996, “
Explicit Runge-Kutta Methods for Parabolic Partial Differential Equations
,”
Appl. Numer. Math.
0168-9274,
22
, pp.
359
379
.
27.
Shyy
,
W.
,
Thakur
,
S.
,
Ouyang
,
H.
,
Liu
,
J.
, and
Blosch
,
E.
, 1997,
Computaional Techniques for Complex Transport Phenomena
,
Cambridge University Press
,
Cambridge, UK
.
28.
Thakur
,
S.
,
Wright
,
J.
, and
Shyy
,
W.
, 2002,
STREAM: A Computational Fluid Dynamics and Heat Transfer Navier-Stokes Solver: Theory and Applications
,
Streamline Numerics, Inc.
,
Gainesville, FL
.
29.
Jayaraman
,
B.
, and
Shyy
,
W.
, 2003, “
Flow Control and Thermal Management using Dielectric Glow Discharge Concepts
,”
Proceedings 33rd AIAA Fluid Dynamics Conference and Exhibit
,
Orlando, FL
, June 23–26, AIAA Paper No. 2003-3712.
You do not currently have access to this content.