The compatibility of low-dimensional thermoelectric materials in forms such as thin films and nanowires for use in thermoelectric coolers is examined. First-order thermoelectric theory predicts that the cold and hot junction temperatures of a thermoelectric circuit are governed solely by the nondimensional figure of merit, ZT. Performance predictions based on this traditional theory have been more broadly applied to the performance of thermoelectric cooler systems, thereby implying that these coolers may be miniaturized without loss of performance and that system performance is dictated principally by ZT. A nondimensional thermoelectric system model for a cooler is developed and typical performance metrics for thermoelectric coolers are presented along with predictions from traditional theory. Performance is examined as a function of thermoelectric element length for representative system conditions. This system study shows that cooler performance may drop significantly when miniaturized, particularly if the cooling elements are realized at the scale of many recently proposed thermoelectric thin films and nanostructured materials. The system theory illustrates that performance is governed by three nondimensional parameters: an effective thermoelectric figure of merit, ZeTa, the relative ability for heat to be drawn into the cooler, and the relative ability for heat to be rejected from the cooler to the ambient environment. As cooler performance depends both on material properties (ZeTa) as well as the relative scale of the materials with respect to system thermal conductances, the applicability of some low-dimensional forms of materials such as thermoelectric elements may require reevaluation. The realization of high performance coolers based on thermoelectric effects must rely on developing high quality materials realized at an appropriate, application-dependent scale.

1.
Ioffe
,
A. F.
, 1956,
Semiconductor Thermoelements and Thermoelectric Cooling
,
Infosearch Limited
, London, Part II, Chaps. 1 and 2.
2.
Rowe
,
D. M.
, ed., 1995,
CRC Handbook of Thermoelectrics
,
CRC Press
, Boca Raton, FL, Chap. 1.
3.
Nolas
,
G. S.
,
Sharp
,
J.
, and
Goldsmid
,
H. J.
, 2001,
Thermoelectrics-Basic Principles and New Materials Developments
,
Springer
, Berlin, Chap. 1.
4.
Venkatasubramanian
,
R.
,
Siivola
,
E.
,
Colpitts
,
T.
, and
O’Quinn
,
B.
, 2001, “
Thin-Film Thermoelectric Devices With High Room-Temperature Figures of Merit
,”
Nature (London)
0028-0836
413
, pp.
597
602
.
5.
Harman
,
T. C.
,
Taylor
,
P. J.
,
Walsh
,
M. P.
, and
LaForge
,
B. E.
, 2002, “
Quantum Dot Superlattice Thermoelectric Materials and Devices
,”
Science
0036-8075,
297
, pp.
2229
2232
.
6.
Li
,
D.
,
Huxtable
,
S.
,
Abrahamson
,
A.
, and
Majumdar
,
A.
, 2005, “
Thermal Transport in Nanostructured Solid-State Cooling Devices
,”
ASME J. Heat Transfer
0022-1481,
127
(
1
), pp.
108
114
.
7.
Chung
,
D. Y.
,
Hogan
,
T.
,
Brazis
,
P.
,
Rocci-Lane
,
M.
,
Kannewurf
,
C.
,
Bastea
,
M.
,
Uher
,
C.
, and
Kanatzidis
,
M. G.
, 2000, “
CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications
,”
Science
0036-8075,
287
, pp.
1024
1027
.
8.
Mahan
,
G.
,
Sales
,
B.
, and
Sharp
,
J.
, 1997, “
Thermoelectric Materials: New Approaches to an Old Problem
,”
Phys. Today
0031-9228,
50
(
3
), pp.
42
47
.
9.
DiSalvo
,
F.
, 1999, “
Thermoelectric Cooling and Power Generation
,”
Science
0036-8075,
285
, pp.
703
706
.
10.
Abramson
,
A. R.
,
Kim
,
W. C.
,
Huxtable
,
S. T.
,
Yan
,
H.
,
Wu
,
Y.
,
Majumdar
,
A.
,
Tien
,
C.-L.
, and
Yang
,
P.
, 2004, “
Fabrication and Characterization of a Nanowire/Polymer-Based Nanocomposite for a Prototype Thermoelectric Device
,”
J. Microelectromech. Syst.
1057-7157,
13
(
3
), pp.
505
513
.
11.
Hicks
,
L. D.
, and
Dresselhaus
,
M. S.
, 1993, “
Thermoelectric Figure of Merit of a One-Dimensional Conductor
,”
Phys. Rev. B
0163-1829,
47
(
24
), pp.
16631
16634
.
12.
Chen
,
G.
, 2000, “
Phonon Heat Conduction in Nanostructures
,”
Int. J. Therm. Sci.
1290-0729,
39
(
4
), pp.
471
480
.
13.
Zou
,
J.
, and
Balandin
,
A.
, 2001, “
Phonon Heat Conduction in a Semiconductor Nanowire
,”
J. Appl. Phys.
0021-8979,
89
(
5
), pp.
2932
2938
.
14.
Huxtable
,
S. T.
,
Abramson
,
A.
,
Majumdar
,
A.
,
Tien
,
C.-L.
,
Zeng
,
G.
,
LaBounty
,
C.
,
Shakouri
,
A.
,
Bowers
,
J. E.
, and
Croke
,
E.
, 2002, “
Thermal Conductivity of Si∕SiGe and SiGe∕SiGe Superlattices
,”
Appl. Phys. Lett.
0003-6951,
80
(
10
), pp.
1737
1739
.
15.
Dresselhaus
,
M. S.
,
Lin
,
Y.-M.
,
Rabin
,
O.
, and
Dresselhaus
,
G.
, 2003, “
Bismuth Nanowires for Thermoelectric Applications
,”
Microscale Thermophys. Eng.
1089-3954,
7
(
3
), pp.
207
219
.
16.
Zhou
,
J.
,
Jin
,
C.
,
Seol
,
J. H.
,
Li
,
X.
, and
Shi
,
L.
, 2005, “
Thermoelectric Properties of Individual Electrodeposited Bismuth Telluride Nanowires
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
133109
.
17.
Hicks
,
L. D.
, and
Dresselhaus
,
M. S.
, 1993, “
Effect of Quantum-Well Structures on Thermoelectric Figure of Merit
,”
Phys. Rev. B
0163-1829,
47
(
19
), pp.
12727
12731
.
18.
Chen
,
G.
,
Zeng
,
T.
,
Borac-Tasciuc
,
T.
and
Song
,
D.
, 2000, “
Phonon Engineering in Nanostructures for Solid-State Energy Conversion
,”
Mater. Sci. Eng., A
0921-5093,
292
(
2
), pp.
155
161
.
19.
Venkatasubramanian
,
R.
, 2000, “
Lattice Thermal Conductivity Reduction and Phonon Localization Like Behavior in Superlattice Structures
,”
Phys. Rev. B
0163-1829,
61
(
4
), pp.
3091
3097
.
20.
Yim
,
W. M.
,
Fitzke
,
E. V.
, and
Rosi
,
F. D.
, 1966, “
Thermoelectric Properties of Bi2Te3‐Sb2Te3‐Sb2Se3 Pseudo-Ternary Alloys in the Temperature Range 77 to 300K
,”
J. Mater. Sci.
0022-2461,
1
, pp.
52
65
.
21.
Bottner
,
H.
,
Nurnus
,
J.
,
Gavrikov
,
A.
,
Kuhner
,
G.
,
Jagle
,
M.
,
Kunzel
,
C.
,
Eberhard
,
D.
,
Plescher
,
G.
,
Shubert
,
A.
, and
Schlereh
,
K. H.
, 2004, “
New Thermoelectric Components Using Microsystem Technologies
,”
J. Microelectromech. Syst.
1057-7157,
13
(
3
), pp.
414
420
.
22.
Venkatasubramanian
,
R.
, 2004, “
Superlattice Thermoelectric Technology
,” DOE/EPRI High Efficiency Thermoelectrics Workshop. San Diego, CA.
23.
Marlow
, 2006, Marlow Industries, product specifications. Web site: www.marlow.comwww.marlow.com
24.
da Silva
,
L.
, and
Kaviany
,
M.
, 2004, “
Micro-Thermoelectric Cooler: Interfacial Effects on Thermal and Electrical Transport
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
10-11
), pp.
2417
2435
.
25.
Huang
,
B. J.
,
Chin
,
C. J.
, and
Duang
,
C. L.
, 2000, “
A Design Method of Thermoelectric Cooler
,”
Int. J. Refrig.
0140-7007,
23
, pp.
208
218
.
26.
Astrain
,
D.
,
Vian
,
J. G.
, and
Domnguez
,
M.
, 2003, “
Increase of COP in the Thermoelectric Refrigeration by the Optimization of Heat Dissipation
,”
Appl. Therm. Eng.
1359-4311,
23
(
17
), pp.
2183
2200
.
27.
Zheng
,
W.
, and
Xu
,
G.
, 1996, “
Influence of Air Heat Sink Geometry in the Performance of Thermoelectric Cooling Modules
,” in 15th International Conference on Thermoelectrics, Pasadena, CA, pp. 311–314.
28.
Min
,
G.
, and
Rowe
,
D. M.
, 1999, “
Cooling Performance of Integrated Thermoelectric Microcooler
,”
Solid-State Electron.
0038-1101,
43
(
5
), pp.
923
929
.
29.
Min
,
G.
, and
Rowe
,
D. M.
, 2000, “
Improved Model for Calculating the Coeficient of Performance of a Peltier Module
,”
Energy Convers. Manage.
0196-8904,
41
(
2
), pp.
163
171
.
30.
Ellison
,
G. N.
, 2003, “
Maximum Thermal Spreading Resistance for Rectangular Sources and Plates With Nonunity Aspect Ratios
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
26
(
2
), pp.
439
454
.
31.
Saini
,
M.
, and
Webb
,
R. L.
, 2003, “
Heat Rejection Limits of Air Cooled Plane Fin Heat Sinks for Computer Cooling
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
1
), pp.
71
79
.
32.
Jacobs
,
M. E.
, 1989, “
The Practical Limits of Forced-Air Cooling of Electronics Equipment
,” in 11th International Telecommunication Energy Conference, INTELEC 1989, Florence, Italy, pp.
4
8
.
33.
Miner
,
A.
, and
Ghoshal
,
U.
, 2006, “
Limits of Heat Removal in Microelectronic Systems
,” IEEE Transactions on Components and Packaging Technology, in press.
34.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Heat Conduction in Solids
,
Oxford University Press
, Oxford, Great Britain,
265
pp.
You do not currently have access to this content.