This paper considers the heating and ignition of small metallic particles in hot gases for a range of Knudsen numbers, for which the continuum description of heat transfer is not valid. Modified Fuchs’ model for the transition heat transfer analysis was adapted to treat diatomic gas with properties changing as a function of temperature. The dimensionless heat transfer coefficient, Nusselt number, was calculated as a function of the particle diameter for the transition heat transfer regime. Heat transfer rates in the transition regime are somewhat different from one another for the cases of particle heating and cooling while the absolute values of the particle-gas temperature difference are the same. This effect does not exist for the continuum heat transfer model. It is observed that the applicability of the continuum heat transfer model for particles of different sizes depends on pressure and particle-air temperature difference. For example, for particles at 300K heated in air at 2000K, the continuum heat transfer model can be used for particle diameters greater than 10μm and 1μm at the pressures of 1bar and 10bars, respectively. Transition heat transfer model must be used for the analysis of heat transfer for nanosized particles. For calculating the ignition delay, the continuum model remains useful for particle diameters greater than 18μm and 2μm for 1bar and 10bars, respectively. The sensitivity of the transition heat transfer model to the accommodation coefficient is evaluated. It is found that for metallic particles, the accommodation coefficient has a relatively weak effect on the heat transfer rate.

1.
Ni
,
T.
,
Pinson
,
J. A.
,
Gupta
,
S.
, and
Santoro
,
R. J.
, 1995, “
Two-Dimensional Imaging of Soot Volume Fraction by the Use of Laser-Induced Incandescence
,”
Appl. Opt.
0003-6935,
34
, pp.
7083
7091
.
2.
Shaddix
,
C. R.
, and
Smyth
,
K. C.
, 1996, “
Laser-Induced Incandescence Measurements of Soot Production in Steady and Flickering Methane, Propane, and Ethylene Diffusion Flames
,”
Combust. Flame
0010-2180,
107
, pp.
418
452
.
3.
Hofmann
,
M.
,
Bessler
,
W. G.
,
Schulz
,
C.
, and
Jander
,
H.
, 2003, “
Laser-Induced Incandescence for Soot Diagnostics at High Pressures
,”
Appl. Opt.
0003-6935,
42
(
12
), pp.
2052
2062
.
4.
Krishnan
,
S.
, and
George
,
P.
, 1998, “
Solid Fuel Ramjet Combustor Design
,”
Prog. Aerosp. Sci.
0376-0421,
34
(
3–4
), pp.
219
256
.
5.
Galfetti
,
L.
,
De Luca
,
L. T.
,
Severini
,
F.
,
Meda
,
L.
,
Marra
,
G.
,
Marchetti
,
M.
,
Regi
,
M.
, and
Bellucci
,
S.
, 2006, “
Nanoparticles for Solid Rocket Propulsion
,”
J. Phys.: Condens. Matter
0953-8984,
18
(
33
), pp.
S1991
-
S2005
.
6.
Fedorov
,
A. V.
, and
Gosteev
,
Y.
, 1998, “
A Physical-Mathematical Investigation of Magnesium Particle Ignition
,”
Arch. Combust.
0208-4198,
16
(
3–4
), pp.
137
152
.
7.
Bocanegra
,
P. E.
,
Chauveau
,
C.
, and
Gökalp
,
I.
, 2007, “
Experimental Studies on the Burning of Coated and Uncoated Micro and Nano-Sized Aluminum Particles
,”
Aerosp. Sci. Technol.
1270-9638,
11
(
1
), pp.
33
38
.
8.
Mitsui
,
R.
, and
Tanaka
,
T.
, 1973, “
Simple Models of Dust Explosion. Predicting Ignition Temperature and Minimum Explosive Limit in Terms of Particle Size
,”
Ind. Eng. Chem. Process Des. Dev.
0196-4305,
12
(
3
), pp.
384
389
.
9.
Going
,
J. E.
, and
Snoeys
,
J.
, 2002, “
Explosion Protection With Metal Dust Fuels
,”
Process Saf. Prog.
1066-8527,
21
(
4
), pp.
305
312
.
10.
Dreizin
,
E. L.
, and
Hoffmann
,
V. K.
, 2000, “
Experiments on Magnesium Aerosol Combustion in Microgravity
,”
Combust. Flame
0010-2180,
122
(
1–2
), pp.
20
29
.
11.
Gauthier
,
B. M.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
, 2004, “
Shock Tube Determination of Ignition Delay Times in Full-Blend and Surrogate Fuel Mixtures
,”
Combust. Flame
0010-2180,
139
(
4
), pp.
300
311
.
12.
Bazyn
,
T.
,
Krier
,
H.
, and
Glumac
,
N.
, 2006, “
Combustion of Nano-Aluminum at Elevated Pressure and Temperature Behind Reflected Shock Waves
,”
Combust. Flame
0010-2180,
145
(
4
), pp.
703
713
.
13.
Legrand
,
B.
,
Marion
,
M.
,
Chauveau
,
C.
,
Gökalp
,
I.
, and
Shafirovich
,
E.
, 2001, “
Ignition and Combustion of Levitated Magnesium and Aluminum Particles in Carbon Dioxide
,”
Combust. Sci. Technol.
0010-2202,
165
(
1
), pp.
151
174
.
14.
Cain
,
J.
, and
Brewster
,
M. Q.
, 2006, “
Radiative Ignition of Fine Ammonium Perchlorate Composite Propellants
,”
Propellants, Explos., Pyrotech.
0721-3115,
31
(
4
), pp.
278
284
.
15.
Liu
,
F.
,
Daun
,
K. J.
,
Snelling
,
D. R.
, and
Smallwood
,
G. J.
, 2006, “
Heat Conduction from a Spherical Nano-Particle: Status of Modeling Heat Conduction in Laser-Induced Incandescence
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
83
, pp.
355
382
.
16.
FIlipov
,
A. V.
, and
Rosner
,
D. E.
, 2000, “
Energy Transfer Between an Aerosol Particle and Gas at High Temperature Ratios in the Knudsen Transition Regime
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
127
138
.
17.
McCoy
,
B. J.
, and
Cha
,
C. Y.
, 1974, “
Transport Phenomena in the Rarefied Gas Transition Regime
,”
Chem. Eng. Sci.
0009-2509,
29
(
2
), pp.
381
388
.
18.
Kennard
,
E. H.
, 1938,
Kinetic Theory of Gases, With an Introduction to Statistical Mechanics
,
McGraw-Hill
,
New York
.
19.
Williams
,
M. M. R.
, and
Loyalka
,
S. K.
, 1991,
Aerosol Science: Theory and Practice
,
Pergamon
,
New York
.
20.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
, 1954, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
0031-899X,
94
(
3
), pp.
511
525
.
21.
Kullmer
,
R.
, 1996, “
Heat Transfer From Small Tungsten Spheres Into an Ambient H2 Atmosphere
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
62
(
2
), pp.
191
196
.
22.
Bird
,
G. A.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Clarendon
,
Oxford
.
23.
Fuchs
,
N. A.
, 1963, “
On the Stationary Charge Distribution on Aerosol Particles in a Bipolar Ionic Atmosphere
,”
Geofis. Pura Appl.
0367-4355,
56
, pp.
185
193
.
24.
Wright
,
P. G.
, 1960, “
On the Discontinuity Involved in Diffusion Across an Interface (the Δ of Fuchs)
,”
Discuss. Faraday Soc.
0014-7664,
30
, pp.
100
112
.
25.
Lees
,
L.
, 1965, “
Kinetic Theory Description of Rarefied Gas Flow
,”
J. Soc. Ind. Appl. Math.
0368-4245,
13
, pp.
278
311
.
26.
Lide
,
D. R.
, 2003,
Handbook of Chemistry and Physics
,
CRC
,
New York
.
27.
Ward
,
T. S.
,
Trunov
,
M. A.
,
Schoentiz
,
M.
, and
Dreizin
,
E. L.
, 2006, “
Experimental Methodology and Heat Transfer Model for Identification of Ignition Kinetics of Powdered Fuels
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
25–26
), pp.
4943
4954
.
28.
Roberts
,
T. A.
,
Burton
,
R. L.
, and
Krier
,
H.
, 1993, “
Ignition and Combustion of Aluminum∕Magnesium Alloy Particles in Oxygen at High Pressures
Combust. Flame
0010-2180,
92
(
1–2
) pp.
125
143
.
29.
Saxena
,
S. C.
, and
Joshi
,
R. K.
, 1989,
Thermal Accommodation and Adsorption Coefficients of Gases
,
Hemisphere
,
New York
.
You do not currently have access to this content.