The effect of Richardson number (Ri=Gr/Re2=Ra/PrRe2) in a confined impinging laminar square jet was investigated numerically through the solution of Navier–Stokes and energy equations. The simulations were carried out for Richardson number between 0.05 and 8 and for jet Reynolds number between 50 and 300. The jet-to-target spacings were fixed to 0.25B, 0.5B, and 1.0B, respectively, where B is the jet width. The calculation results show that for the jet-to-target spacing of 0.25B, the flow structure of a square single jet impinging on a heated plate is not affected by the Richardson number. For such very small jet-to-target distances the jet is merely diverted in the transverse direction. The wall jet fills the whole gap between the plates with a very small vortex motion formed near the corners of the jet cross section close to the upper plate. In addition, the effect of the Richardson number on the variation in the local Nusselt number is found to be not significant. For higher jet-to-target spacing, the Nusselt number increased as the Richardson number increased for the same Re. In addition, the heat transfer rate increased as the jet Reynolds number increased for the same Richardson number.

1.
Gardon
,
R.
, and
Akfirat
,
J. C.
, 1966, “
Heat Transfer Characteristics of Impinging Two Dimensional Air Jets
,”
ASME J. Heat Transfer
,
88
, pp.
101
108
. 0022-1481
2.
Scholtz
,
M. T.
, and
Trass
,
O.
, 1970, “
Mass Transfer in a Nonuniform Jet: Part 2. Boundary Layer Flow Mass Transfer
,”
AIChE J.
0001-1541,
16
, pp.
90
96
.
3.
Chou
,
Y. J.
, and
Hung
,
Y. H.
, 1994, “
Impingement Cooling of an Isothermally Heat Surface With a Confined Slot Jet
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
479
482
.
4.
Elison
,
B.
, and
Webb
,
B. W.
, 1994, “
Local Heat Transfer to Impinging Liquid Jets in the Initially Laminar, Transitional, and Turbulent Regimes
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
1207
1216
.
5.
Sezai
,
I.
, and
Mohamad
,
A. A.
, 1999, “
3-D Simulation of Laminar Rectangular Impinging Jets, Flow Structure and Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
50
56
.
6.
Sparrow
,
E. M.
, and
Minkowycz
,
W. J.
, 1962, “
Buoyancy Effects on Horizontal Boundary-Layer Flow and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
5
, pp.
505
511
. 0017-9310
7.
Hieber
,
C. A.
, 1973, “
Mixed Convection Above a Heated Horizontal Surface
,”
Int. J. Heat Mass Transfer
,
16
, pp.
769
772
. 0017-9310
8.
Yuan
,
T. D.
,
Liburdy
,
J. A.
, and
Wang
,
T.
, 1988, “
Buoyancy Effects on Laminar Impinging Jets
,”
ASME J. Heat Transfer
,
10
(
31
), pp.
2137
2145
. 0022-1481
9.
Wang
,
Y. B.
,
Chaussavoine
,
C.
, and
Teyssandier
,
F.
, 1993, “
Two-Dimensional Modeling of a Non-Confined Circular Impinging Jet Reactor-Fluid Dynamics and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
36
, pp.
857
873
. 0017-9310
10.
Potthast
,
F.
,
Laschefski
,
H.
, and
Mitra
,
N. K.
, 1994, “
Numerical Investigation of Flow Structure and Mixed Convection Heat Transfer of Impinging Radial and Axial Jets
,”
Numer. Heat Transfer, Part A
1040-7782,
26
, pp.
123
140
.
11.
Sahoo
,
D.
, and
Sharif
,
M. A. R.
, 2004, “
Mixed Convective Cooling of an Isothermal Hot Surface by Confined Slot Jet Impingement
,”
Numer. Heat Transfer, Part A
1040-7782,
45
, pp.
887
909
.
12.
Sahoo
,
D.
, and
Sharif
,
M. A. R.
, 2004, “
Numerical Modeling of Slot-Jet Impingement Cooling of a Constant Heat Flux Surface Confined by a Parallel Wall
,”
Int. J. Therm. Sci.
,
43
, pp.
877
887
. 1290-0729
13.
Sarghini
,
F.
, and
Ruocco
,
G.
, 2004, “
Enhancement and Reversal Heat Transfer by Competing Models in Jet Impingement
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1711
1718
.
14.
Quinn
,
W. R.
, 1990, “
Mean Flow and Turbulence Measurements in a Triangular Turbulent Free Jet
,”
Int. J. Heat Fluid Flow
,
11
, pp.
220
224
. 0142-727X
15.
Wadsworth
,
D. C.
, and
Mudawar
,
I.
, 1990, “
Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Liquids
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
891
898
.
16.
Mi
,
J.
,
Nathan
,
G. J.
, and
Luxton
,
R. E.
, 2000, “
Centerline Mixing Characteristics of Jets From Nine Differently Shaped Nozzles
,”
Exp. Fluids
0723-4864,
28
, pp.
93
94
.
17.
Leonard
,
B. P.
, 1979, “
A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
19
, pp.
59
98
.
18.
Leonard
,
B. P.
, and
Mokhtari
,
S.
, 1990, “
Beyond First Order Upwinding: The ULTRA-SHARP Alternative for Nonoscillatory Steady-State Simulation of Convection
,”
Int. J. Numer. Methods Eng.
0029-5981,
30
, pp.
729
766
.
19.
Leonard
,
B. P.
, and
Drummond
,
J. E.
, 1995, “
Why You Should Not Use ‘Hybrid,’ ‘Power Law’ or Related Exponential Schemes for Convective Modeling. There are Much Better Alternatives
,”
Int. J. Numer. Methods Fluids
0271-2091,
20
, pp.
421
442
.
20.
Stone
,
H. L.
, 1968, “
Iterative Solution of Implicit Approximations of Multi-Dimensional Partial Differential Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
5
, pp.
530
558
.
21.
Hackbush
,
W.
, 1994,
Iterative Solution of Large Sparse Systems of Equations
,
Springer
,
New York
.
22.
Van der Vorst
,
H. A. V.
, 1989, “
BICGSTAB: A Fast and Smoothly Converging Variant of BI-CG for the Solution of Non-Symmetric Linear Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
10
, pp.
1174
1185
.
23.
Saad
,
Y.
, 1996,
Iterative Methods for Sparse Linear Systems
,
PSW
,
Boston
.
24.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
147
163
.
25.
Sparrow
,
E. M.
, and
Wong
,
T. C.
, 1975, “
Impingement Transfer Coefficients Due to Initially Laminar Slot Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
18
, pp.
597
605
.
26.
Aldabbagh
,
L. B. Y.
, and
Sezai
,
I.
, 2004, “
Three-Dimensional Numerical Simulation of an Array of Impinging Laminar Square Jets With Spent Fluid Removal
,”
Int. J. Therm. Sci.
,
43
, pp.
241
247
. 1290-0729
27.
Aldabbagh
,
L. B. Y.
, and
Sezai
,
I.
, 2002, “
Numerical Simulation of Three-Dimensional Laminar Square Twin-Jet Impingement on a Flat Plate, Flow Structure, and Heat Transfer
,”
Numer. Heat Transfer
,
41
, pp.
835
850
. 1040-7782
28.
Aldabbagh
,
L. B. Y.
, and
Sezai
,
I.
, 2002, “
Numerical Simulation of Three-Dimensional Laminar Multiple Impinging Square Jets
,”
Int. J. Heat Fluid Flow
,
23
, pp.
509
518
. 0142-727X
You do not currently have access to this content.