It is shown that addition of alumina, zinc-oxide, and diamond particles can enhance the critical heat flux (CHF) limit of water in flow boiling. The particles used here were in the nanometer range (<100nm) and at low concentration (0.1vol%). The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500kg/m2s, 2000kg/m2s, and 2500kg/m2s). The thermal conditions at CHF were subcooled. The maximum CHF enhancement was 53%, 53%, and 38% for alumina, zinc oxide, and diamond, respectively, always obtained at the highest mass flux. A postmortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during boiling. Additionally, the wettability of the surface is substantially increased, which seems to correlate well with the observed CHF enhancement.

1.
You
,
S. M.
,
Kim
,
J.
, and
Kim
,
K. H.
, 2003, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
0003-6951,
83
(
16
), pp.
3374
3376
.
2.
Vassallo
,
P.
,
Kumar
,
R.
, and
D’Amico
,
S.
, 2004, “
Pool Boiling Heat Transfer Experiments in Silica-Water Nano-Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
407
411
.
3.
Milanova
,
D.
,
Kumar
,
R.
,
Kuchibhatla
,
S.
, and
Seal
,
S.
, 2006, “
Heat Transfer Behavior of Oxide Nanoparticles in Pool Boiling Experiment
,”
Proceedings of the Fourth International Conference on Nanochannels, Microchannels and Minichannels
, Limerick, Ireland, Jun. 19–21.
4.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M.
, 2006, “
Experimental Study on CHF Characteristics of Water-TiO2 Nano-Fluids
,”
Nuclear Engineering and Technology, An International Journal of the Korean Nuclear Society
,
38
(
1
), pp.
61
68
.
5.
Bang
,
I. C.
, and
Chang
,
S. H.
, 2005, “
Boiling Heat Transfer Performance and Phenomena of Al2O3
-Water Nano-Fluids From a Plain Surface in a Pool,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2407
2419
.
6.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2007, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4105
4116
.
7.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2006, “
Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
153107
.
8.
Jackson
,
J. E.
,
Borgmeyer
,
B. V.
,
Wilson
,
C. A.
,
Cheng
,
P.
, and
Bryan
,
J. E.
, 2006, “
Characteristics of Nucleate Boiling With Gold Nanoparticles in Water
,”
Proceedings of IMECE 2006
, Chicago, IL, Nov. 5–10.
9.
Buongiorno
,
J.
,
Hu
,
L. W.
,
Kim
,
S. J.
,
Hannink
,
R.
,
Truong
,
B.
, and
Forrest
,
E.
, 2008, “
Nanofluids for Enhanced Economics and Safety of Nuclear Reactors: An Evaluation of the Potential Features, Issues and Research Gaps
,”
Nucl. Technol.
,
162
, pp.
80
91
. 0029-5450
10.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2008, “
Alumina Nanoparticles Enhance the Flow Critical Heat Flux of Water at Low Pressure
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
044501
.
11.
Lee
,
J.
, and
Mudawar
,
I.
, 2007, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
452
463
.
12.
Gnielinski
,
V.
, 1976, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
0020-6318,
16
, pp.
359
368
.
13.
Groeneveld
,
D. C.
,
Leung
,
L. K. H.
,
Kirillov
,
P. L.
,
Bobkov
,
V. P.
,
Smogalev
,
I. P.
,
Vinogradov
,
V. N.
,
Huang
,
X. C.
, and
Royer
,
E.
, 1996, “
The 1995 Look-Up Table for Critical Heat Flux in Tubes
,”
Nucl. Eng. Des.
0029-5493,
163
, pp.
1
23
.
14.
Kandlikar
,
S. G.
, 2001, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
1071
1079
.
15.
Celata
,
G. P.
,
Cumo
,
M.
, and
Mariani
,
A.
, 1994, “
Rationalization of Existing Mechanistic Models for the Prediction of Water Subcooled Flow Boiling Critical Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
347
360
.
You do not currently have access to this content.