This paper introduces a novel heat transfer enhancement surface, referred to as metal-graphite composite surface. It is comprised of high thermal conductivity graphite microfibers interspersed within a metal matrix (copper or aluminum) to enhance the bubble formation at the nucleation sites, and significantly improve the nucleate boiling heat transfer. Experiments revealed that its boiling heat transfer enhancement is comparable or in some respect even superior to the commercially available boiling heat transfer enhancement surfaces such as porous boiling surface and integral roughness surface. In addition, it does not result in any extra pressure loss and it minimizes surface fouling. Macro- to microscale heat transfer phenomena of the composite surfaces is treated. Discussions include characteristics of the surface, enhancement mechanisms, critical heat flux, boiling thermal hysteresis, bubble generation, growth and departure, and applications in electronic cooling, and under reduced gravity conditions.

1.
Bergles
,
A. E.
, and
Chyu
,
M. C.
, 1982, “
Characteristics of Nucleate Pool Boiling From Porous Metallic Coatings
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
279
285
.
2.
Webb
,
R. L.
, 1986, “
High Performance Heat Transfer Surfaces for Boiling and Condensation
,”
Heat Transfer in Energy Problems
,
W. J.
Yang
and
Y.
Mori
, eds.,
Hemisphere
,
Washington, DC
, pp.
127
132
.
3.
Nakayama
,
W.
,
Nakajimi
,
T.
, and
Hirasawa
,
S.
1984, “
Heat Sink Studs Having Enhanced Boiling Surfaces for Cooling of Microelectronic Components
,” ASME Paper No. 84-WA/HT-89.
4.
Yang
,
W. -J.
,
Takizawa
,
H.
, and
Vrable
,
D. L.
, 1991, “
Augmented Boiling on Copper-Graphite Composite Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
34
(
11
), pp.
2751
2758
.
5.
Yang
,
W. -J.
,
Takizawa
,
H.
, and
Vrable
,
D. L.
, 1991, “
Natural Convection From Horizontal Heated Copper-Graphite Composite Surface
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
1031
1033
.
6.
Vrable
,
D. L.
, 2001, “
Composite Material Technology to Enhance Boiling Heat Transfer Performance
,”
Int. J. Transp. Phenom.
1028-6578,
3
(
4
), pp.
395
405
.
7.
Yang
,
G. W.
, 1995, “
Micro- and Macro-Phenomena in Nucleate Pool Boiling on Graphite-Copper Composite Materials
,” Ph.D. thesis, Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI.
8.
Liang
,
H. S.
, 1997, “
Nucleate Pool Boiling on Micro-Graphite-Fibers With Applications in Micro-Electronic Cooling
,” Ph.D. thesis, Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI.
9.
Yang
,
W. -J.
, and
Zhang
,
N.
, 1992, “
Boiling Performance on Non-Isothermal Surfaces
,”
Proceedings of the Engineering Foundation Conference on Pool and External Low Boiling
, Santa Barbara, CA, pp.
119
124
.
10.
Zhang
,
N.
,
Yang
,
W. -J.
, and
Yang
,
G. W.
, 1992, “
Two-Tier Model for Nucleate Pool Boiling on Micro Configured Composite Surfaces
,”
Int. Commun. Heat Mass Transfer
0735-1933,
19
, pp.
767
779
.
11.
Yang
,
G. W.
,
Yang
,
W. -J.
, and
Zhang
,
N.
, 1992, “
Mechanisms of Nucleate Pool Boiling on Composite Surfaces
,”
Int. Commun. Heat Mass Transfer
0735-1933,
19
, pp.
781
790
.
12.
Yang
,
G. W.
,
Liang
,
H. S.
,
Yang
,
W. -J.
, and
Vrable
,
D. L.
, 1996, “
Nucleate Pool Boiling on Micro Graphite-Copper Composite Surfaces
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
792
796
.
13.
Liang
,
H. S.
, and
Yang
,
W. -J.
, 1998, “
Nucleate Pool Boiling Heat Transfer in a Highly Wetting Liquid on Micro-Graphite-Fiber Composite Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
1993
2001
.
14.
Liang
,
H. S.
,
Yang
,
W. -J.
, and
Vrable
,
D. L.
, 1998, “
Feasibility Study of Immersion Cooling of Multi-Chip Modules on Metal-Graphite Composite Surfaces
,”
ASME J. Heat Transfer Conference
,
J. S.
Lee
, ed., Vol.
2
, pp.
547
552
.
15.
Marcus
,
B. D.
, and
Dropkin
,
D.
, 1965, “
Measured Temperature Profiles Within the Superheated Boundary Layer Above a Horizontal Surface in Saturated Nucleate Pool Boiling of Water
,”
ASME J. Heat Transfer
0022-1481,
86
, pp.
333
341
.
16.
Yang
,
W. -J.
, and
Zhang
,
N.
, 1999, “
A Theoretical Treatment of Critical Heat Flux on Metal-Graphite Heating Surfaces
,”
Proceedings of the Heat Transfer Division 1999
,
ASME
,
New York
, HTD-Vol.
364-2
, pp.
315
320
.
17.
Zhang
,
N.
,
Chao
,
D. F.
, and
Yang
,
W. -J.
, 2001, “
Enhancement of Nucleate Pool Boiling and Critical Heat Flux Under Microgravity Conditions
,”
J. Thermophys. Heat Transfer
0887-8722,
15
, pp.
326
332
.
18.
Zhang
,
N.
, and
Yang
,
W. J.
, 2004, “
A General Model of Bubble Departure From a Heated Solid Surface
,”
Heat Transfer Science and Technology 2004
,
Proceedings of the Sixth International Symposium on Heat Transfer (ISHT6)
,
B. X.
Wang
, ed., Beijing, China, Jun. 15–19, Paper No. 06-01.
19.
Zhang
,
N.
,
Chao
,
D. F.
, and
Yang
,
W. -J.
, 2003, “
Enhanced Pool Boiling on Copper-Graphite Surfaces
,”
Proceedings of International Conference on Energy and the Environment
,
Shanghai Science and Technology Publishers
,
Shanghai, China
, Vol.
1
, pp.
678
684
.
20.
Chao
,
D. -F.
,
Zhang
,
N.
, and
Yang
,
W. -J.
, 2008, “
Growth of Micro Bubbles on Micro-Configured Metal-Graphite Composite Surfaces and Boiling Enhancement
,”
Proceedings of the First ASME Micro/Nanoscale Heat Transfer International Conference
, Tainan, Taiwan, Jan. 6–9, Paper No. 52010.
21.
Chao
,
D. F.
,
Zhang
,
N.
, and
Yang
,
W. -J.
, 2004, “
Nucleate Pool Boiling on Copper-Graphite Composite Surfaces and Its Enhancement Mechanisms
,”
J. Thermophys. Heat Transfer
0887-8722,
18
, pp.
236
242
.
You do not currently have access to this content.