Carbon nanofibers (CNFs) were incorporated into nylon 11 to form nylon 11-carbon nanofiber nanocomposites via twin screw extrusion. Injection molding has been employed to fabricate specimens that possess enhanced mechanical strength and fire retardancy. The thermal conductivity of these polymer nanocomposites was measured using a guarded hot plate method. The measurement results show that the room temperature thermal conductivity increases with the CNF loading from for pure Nylon 11 to at CNF loading. The effective medium theory has been used to determine the interface thermal resistance between the CNFs and the matrix to be in the range of from the measured thermal conductivity of the nanocomposite.
Issue Section:
Experimental Techniques
1.
Biercuk
, M. J.
, Llaguno
, M. C.
, Radosavljevic
, M.
, Hyun
, J. K.
, Johnson
, A. T.
, and Fischer
, J. E.
, 2002, “Carbon Nanotube Composites for Thermal Management
,” Appl. Phys. Lett.
0003-6951, 80
, pp. 2767
–2769
.2.
Kashiwagi
, T.
, Grulke
, E.
, Hilding
, J.
, Groth
, K.
, Harris
, R.
, Butler
, K.
, Shields
, J.
, Kharchenko
, S.
, and Douglas
, J.
, 2004, “Thermal and Flammability Properties of Polypropylene/Carbon Nanotube Nanocomposites
,” Polymer
0032-3861, 45
, pp. 4227
–4239
.3.
Abramson
, A. R.
, Kim
, W. C.
, Huxtable
, S. T.
, Yan
, H. Q.
, Wu
, Y. Y.
, Majumdar
, A.
, Tien
, C. L.
, and Yang
, P. D.
, 2004, “Fabrication and Characterization of a Nanowire/Polymer-Based Nanocomposite for a Prototype Thermoelectric Device
,” J. Microelectromech. Syst.
1057-7157, 13
, pp. 505
–513
.4.
Koo
, J. H.
, 2006, Polymer Nanocomposites: Processing, Characterization, and Applications
, McGraw-Hill
, New York
.5.
Koo
, J. H.
, Pilato
, L. A.
, Wissler
, G.
, Cheng
, J.
, Ho
, D.
, Nguyen
, K.
, Stretz
, H.
, and Luo
, Z. P.
, 2005, “Flammability and Mechanical Properties of Nylon 11 Nanocomposites
,” Proceedings of the SAMPE 2005 ISSE, SAMPE
, Covina, CA, pp. 1
–14
.6.
Wiemann
, K.
, Kaminsky
, W.
, Gojny
, F.
, and Schulte
, K.
, 2005, “Synthesis and Properties of Syndiotactic Poly(propylene)/Carbon Nanofiber and Nanotube Composites Prepared by In Situ Polymerization With Metallocene/MAO Catalysts
,” Macromol. Chem. Phys.
1022-1352, 206
, pp. 1472
–1478
.7.
Hammel
, E.
, Tang
, X.
, Trampert
, M.
, Schmitt
, T.
, Mauthner
, K.
, Eder
, A.
, and Potschke
, P.
, 2004, “Carbon Nanofibers for Composite Applications
,” Carbon
0008-6223, 42
, pp. 1153
–1158
.8.
Choi
, Y. K.
, Sugimotot
, K. I.
, Song
, S. M.
, and Endo
, M.
, 2005, “Mechanical and Thermal Properties of Vapor-Grown Carbon Nanofiber and Polycarbonate Composite Sheets
,” Mater. Lett.
0167-577X, 59
, pp. 3514
–3520
.9.
ASTM
, 2004, “C177-04 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus
,” ASTM
, West Conshohocken, PA.10.
Mark
, J. E.
, 2007, Physical Properties of Polymers Handbook
, Springer
, New York
.11.
Nan
, C. W.
, Liu
, G.
, Lin
, Y. H.
, and Li
, M.
, 2004, “Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,” Appl. Phys. Lett.
0003-6951, 85
, pp. 3549
–3551
.12.
Available online at http://www.apsci.com/ngm-pyro1.htmlhttp://www.apsci.com/ngm-pyro1.html.
14.
Yu
, Ch.
, Saha
, S.
, Zhou
, J.
, Shi
, L.
, Cassell
, A. M.
, Cruden
, B. A.
, Ngo
, Q.
, and Li
, J.
, 2006, “Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber
,” ASME J. Heat Transfer
0022-1481, 128
, pp. 234
–239
.15.
Macedo
, F.
, and Ferreira
, J. A.
, 2003, “Thermal Contact Resistance Evaluation in Polymer-Based Carbon Fiber Composites
,” Rev. Sci. Instrum.
0034-6748, 74
(1
), pp. 828
–830
.16.
Shenogin
, S.
, Bodapati
, A.
, Xue
, L.
, Oxisik
, R.
, and Keblinksi
, P.
, 2004, “Effect of Chemical Functionalization on Thermal Transport of Carbon Nanotube Composites
,” Appl. Phys. Lett.
0003-6951, 85
, pp. 2229
–2231
.17.
Bryning
, M. B.
, Milkie
, D. E.
, Islam
, M. F.
, Kikkawa
, J. M.
, and Yodh
, A. G.
, 2005, “Thermal Conductivity and Interfacial Resistance in Single-Wall Carbon Nanotube Epoxy Composites
,” Appl. Phys. Lett.
0003-6951, 87
, p. 161909
.18.
Huxtable
, S. T.
, Cahill
, D. G.
, Shenogin
, S.
, Xue
, L.
, Ozisik
, R.
, Barone
, P.
, Usrey
, M.
, Strano
, M. S.
, Siddons
, G.
, Shim
, M.
, and Keblinski
, P.
, 2003, “Interfacial Heat Flow in Carbon Nanotube Suspensions
,” Nature Mater.
1476-1122, 2
, pp. 731
–734
.19.
Shenogin
, S.
, Xue
, L.
, Ozisik
, R.
, Keblinski
, P.
, and Cahill
, D.
, 2004, “Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites
,” J. Appl. Phys.
0021-8979, 95
, pp. 8136
–8144
.20.
Haggenmueller
, R.
, Guthy
, C.
, Lukes
, J. R.
, Fisher
, J. E.
, and Winey
, K. I.
, 2007, “Single Wall Carbon Nanotube/Polyethylene Nanocomposites: Thermal and Electrical Conductivity
,” Macromolecules
0024-9297, 40
, pp. 2417
–2421
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.