This article presents a novel methodology, which is highly efficient and simple to implement, for simultaneous retrieval of a complete set of thermal coefficients in combined parameter and function estimation problems. Moreover, the effect of correlated unknown variables on convergence performance is examined. The present methodology is a combination of two different classical methods: The conjugate gradient method with adjoint problem (CGMAP) and Box–Kanemasu method (BKM). The methodology uses the benefit of CGMAP in handling function estimation problems and BKM for parameter estimation problems. One of the unique features about the present method is that the correlation among the separate unknowns does not disrupt the convergence of the problem. Numerical experiments using measurement errors are performed to verify the efficiency of the proposed method in solving the combined parameter and function estimation problems. The results obtained by the present approach show that the combined procedure can efficiently and reliably estimate the values of the unknown thermal coefficients.

1.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
, 1985,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley
,
New York
.
2.
Hakkaki-Fard
,
A.
, and
Kowsary
,
F.
, 2008, “
Heat Flux Estimation in a Charring Ablator
,”
Numer. Heat Transfer, Part A
1040-7782,
53
, pp.
543
560
.
3.
Alifanov
,
O. M.
, 1994,
Inverse Heat Transfer Problems
,
Springer
,
New York
.
4.
Beck
,
J. V.
, and
Arnold
,
K. J.
, 1977,
Parameter Estimation in Engineering and Science
,
Wiley
,
New York
.
5.
Dowding
,
K. J.
,
Beck
,
J. V.
, and
Blackwell
,
B. F.
, 1999, “
Estimating Temperature-Dependent Thermal Properties of Carbon-Carbon Composite
,”
J. Thermophys. Heat Transfer
0887-8722,
13
, pp.
328
336
.
6.
Aviles-Ramos
,
C.
,
Haji-Sheikh
,
A.
,
Beck
,
J. V.
, and
Dowding
,
K. J.
, 2001, “
Estimation of Thermophysical Properties by the Spectral Method—Development and Evaluation
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
24
30
.
7.
Veiseh
,
S.
,
Hakkaki-Fard
,
A.
, and
Kowsary
,
F.
, 2009, “
Determining of the Air/Fiber Conductivity of Mineral Wool Insulations in Building Applications Using Parameter Estimation Methods
,”
Journal of Building Physics
,
32
, pp.
243
260
. 0002-7820
8.
Molavi
,
H.
,
Hakkaki-Fard
,
A.
,
Pourshaban
,
I.
,
Mahbubi Fard
,
M.
, and
Rahmani
,
R. K.
, 2009, “
Estimation of Temperature-Dependent Thermophysical Properties of Noncharring Ablators
,”
J. Thermophys. Heat Transfer
0887-8722,
23
, pp.
50
58
.
9.
Molavi
,
H.
,
Pourshaban
,
I.
,
Hakkaki-Fard
,
A.
,
Molavi
,
M.
,
Ayasoufi
,
A.
, and
Rahmani
,
R. K.
, 2009, “
Inverse Identification of Thermal Properties of Charring Ablators
,”
Numer. Heat Transfer, Part B
1040-7790,
56
, pp.
478
501
.
10.
Allahdadi-Mehrabadi
,
M.
,
Sadeghy
,
K.
,
Hakkaki-Fard
,
A.
, and
Sefidgar
,
M.
, 2008, “
On the Use of Inverse Methods to Parameter Estimation in Turbulent Pipe Flows of Drag Reducing Polymers
,”
J. Soc. Rheol., Jpn.
0387-1533,
36
, pp.
241
251
.
11.
Petrushevsky
,
V.
, and
Cohen
,
S.
, 1999, “
Nonlinear Inverse Heat Conduction With a Moving Boundary: Heat Flux and Surface Recession Estimation
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
708
711
.
12.
Kim
,
S. K.
, and
Daniel
,
I. M.
, 2004, “
Gradient Method for Inverse Heat Conduction Problem in Nanoscale
,”
Int. J. Numer. Methods Eng.
0029-5981,
60
, pp.
2165
2181
.
13.
Dowding
,
K. J.
, and
Beck
,
J. V.
, 1999, “
A Sequential Gradient Method for the Inverse Heat Conduction Problem (IHCP)
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
300
306
.
14.
Kowsary
,
F.
,
Behbahani-nia
,
A.
, and
Pourshaghaghy
,
A.
, 2006, “
Transient Heat Flux Function Estimation Utilizing the Variable Metric Method
,”
Int. Commun. Heat Mass Transf.
,
33
, pp.
800
810
.
15.
Molavi
,
H.
,
Rahmani
,
R. K.
,
Pourshaghaghy
,
A.
,
Sharifi Tashnizi
,
E.
, and
Hakkaki-Fard
,
A.
, 2010, “
Heat Flux Estimation in a Nonlinear Inverse Heat Conduction Problem With Moving Boundary
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
081301
.
16.
Rahmani
,
R. K.
,
Molavi
,
H.
, and
Ayasoufi
,
A.
, 2009, “
A Novel Gradient-Type Method Based on Maximum Entropy Principle Applied to the Inverse Radiation Problems
,”
ASME Early Career Technical Journal
,
8
, pp.
3.1
3.9
.
17.
Rahmani
,
R. K.
,
Molavi
,
H.
,
Ayasoufi
,
A.
,
Koomullil
,
R. P.
, and
Cheng
,
G.
, 2010, “
Solution of Radiative Boundary Design Problems Using a Combined Optimization Technique
,”
Numer. Heat Transfer, Part B
1040-7790,
57
, pp.
348
371
.
18.
Dowding
,
K. J.
,
Beck
,
J. V.
,
Ulbrich
,
A.
,
Blackwell
,
B.
, and
Hayes
,
J.
, 1995, “
Estimation of Thermal Properties and Surface Heat Flux in Carbon-Carbon Composite
,”
J. Thermophys. Heat Transfer
0887-8722,
9
, pp.
345
351
.
19.
Loulou
,
T.
, and
Artioukhine
,
E.
, 2003, “
Optimal Choice of Descent Steps in Gradient-Type Methods When Applied to Combined Parameter and Function or Multi-Function Estimation
,”
Inverse Probl. Eng.
1068-2767,
11
, pp.
273
288
.
20.
Loulou
,
T.
, and
Scott
,
E. P.
, 2006, “
An Inverse Heat Conduction Problem With Heat Flux Measurements
,”
Int. J. Numer. Methods Eng.
0029-5981,
67
, pp.
1587
1616
.
21.
Loulou
,
T.
, 2007, “
Combined parameter and Function Estimation With Application to Thermal Conductivity and Surface Heat Flux
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1309
1320
.
22.
Patankar
,
S. V.
, 1986,
Numerical Heat Transfer and Fluid Flows
,
Hemisphere
,
London
.
23.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
, 2000,
Inverse Heat Transfer Fundamentals and Applications
,
Taylor & Francis
,
New York
.
You do not currently have access to this content.