This paper describes a theoretical investigation of near-field radiative heat transfer between doped silicon surfaces separated by a vacuum gap. An improved dielectric function model for heavily doped silicon is employed. The effects of doping level, polarization, and vacuum gap width on the spectral and total radiative transfer are studied based on the fluctuational electrodynamics. It is observed that increasing the doping concentration does not necessarily enhance the energy transfer in the near-field. The energy streamline method is used to model the lateral shift of the energy pathway, which is the trace of the Poynting vectors in the vacuum gap. The local density of states near the emitter is calculated with and without the receiver. The results from this study can help improve the understanding of near-field radiation for applications such as thermophotovoltaic energy conversion, nanoscale thermal imaging, and nanothermal manufacturing.

1.
Zhang
,
Z. M.
, 2007,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
, Chap. 10.
2.
Joulain
,
K.
,
Mulet
,
J. -P.
,
Marquier
,
F.
,
Carminati
,
R.
, and
Greffet
,
J. -J.
, 2005, “
Surface Electromagnetic Waves Thermally Excited: Radiative Heat Transfer, Coherence Properties and Casimir Forces Revisited in the Near-Field
,”
Surf. Sci. Rep.
0167-5729,
57
, pp.
59
112
.
3.
Narayanaswamy
,
A.
, and
Chen
,
G.
, 2003, “
Surface Modes for Near-Field Thermophotovoltaics
,”
Appl. Phys. Lett.
0003-6951,
82
, pp.
3544
3546
.
4.
Park
,
K.
,
Basu
,
S.
,
King
,
W. P.
, and
Zhang
,
Z. M.
, 2008, “
Performance Analysis of Near-Field Thermophotovoltaic Devices Considering Absorption Distribution
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
109
, pp.
305
316
.
5.
Kittel
,
A.
,
Muller-Hirsch
,
W.
,
Parisi
,
J.
,
Biehs
,
S. A.
,
Reddig
,
D.
, and
Holthaus
,
M.
, 2005, “
Near-Field Heat Transfer in a Scanning Thermal Microscope
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
224301
.
6.
De Wilde
,
Y.
,
Formanek
,
F.
,
Carminati
,
R.
,
Gralak
,
B.
,
Lemoine
,
P. A.
,
Joulain
,
K.
,
Mulet
,
J. -P.
,
Chen
,
Y.
, and
Greffet
,
J. -J.
, 2006, “
Thermal Radiation Scanning Tunnelling Microscopy
,”
Nature (London)
0028-0836,
444
, pp.
740
743
.
7.
Chimmalgi
,
A.
,
Choi
,
T. Y.
,
Grigoropoulos
,
C. P.
, and
Komvopoulos
,
K.
, 2003, “
Femtosecond Laser Aperturless Near-Field Nanomachining of Metals Assisted by Scanning Probe Microscopy
,”
Appl. Phys. Lett.
0003-6951,
82
, pp.
1146
1148
.
8.
Wang
,
L.
,
Uppuluri
,
S. M.
,
Jin
,
E. X.
, and
Xu
,
X.
, 2006, “
Nanolithography Using High Transmission Nanoscale Bowtie Apertures
,”
Nano Lett.
1530-6984,
6
, pp.
361
364
.
9.
Polder
,
D.
, and
Vanhove
,
M.
, 1971, “
Theory of Radiative Heat Transfer Between Closely Spaced Bodies
,”
Phys. Rev. B
0163-1829,
4
, pp.
3303
3314
.
10.
Fu
,
C. J.
, and
Zhang
,
Z. M.
, 2006, “
Nanoscale Radiation Heat Transfer for Silicon at Different Doping Levels
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1703
1718
.
11.
Chapuis
,
P. O.
,
Volz
,
S.
,
Henkel
,
C.
,
Joulain
,
K.
, and
Greffet
,
J. -J.
, 2008, “
Effects of Spatial Dispersion in Near-Field Radiative Heat Transfer Between Two Parallel Metallic Surfaces
,”
Phys. Rev. B
0163-1829,
77
, p.
035431
.
12.
Francoeur
,
M.
, and
Menguc
,
M. P.
, 2008, “
Role of Fluctuational Electrodynamics in Near-Field Radiative Heat Transfer
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
109
, pp.
280
293
.
13.
Hu
,
L.
,
Narayanaswamy
,
A.
,
Chen
,
X. Y.
, and
Chen
,
G.
, 2008, “
Near-Field Thermal Radiation Between Two Closely Spaced Glass Plates Exceeding Planck’s Blackbody Radiation Law
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
133106
.
14.
Volokitin
,
A. I.
, and
Persson
,
B. N. J.
, 2001, “
Radiative Heat Transfer Between Nanostructures
,”
Phys. Rev. B
0163-1829,
63
, p.
205404
.
15.
Mulet
,
J. -P.
,
Joulain
,
K.
,
Carminati
,
R.
, and
Greffet
,
J. -J.
, 2001, “
Nanoscale Radiative Heat Transfer Between a Small Particle and a Plane Surface
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
2931
2933
.
16.
Narayanaswamy
,
A.
, and
Chen
,
G.
, 2008, “
Thermal Near-Field Radiative Transfer Between Two Spheres
,”
Phys. Rev. B
0163-1829,
77
, p.
075125
.
17.
Marquier
,
F.
,
Joulain
,
K.
,
Mulet
,
J. -P.
,
Carminati
,
R.
, and
Greffet
,
J. -J.
, 2004, “
Engineering Infrared Emission Properties of Silicon in the Near-Field and the Far Field
,”
Opt. Commun.
0030-4018,
237
, pp.
379
388
.
18.
Basu
,
S.
,
Lee
,
B. J.
, and
Zhang
,
Z. M.
, 2010, “
Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature
,”
ASME J. Heat Transfer
0022-1481,
132
(
2
), p.
023301
.
19.
Zhang
,
Z. M.
, and
Lee
,
B. J.
, 2006, “
Lateral Shift in Photon Tunneling Studied by the Energy Streamline Method
,”
Opt. Express
1094-4087,
14
, pp.
9963
9970
.
20.
Lee
,
B. J.
,
Park
,
K.
, and
Zhang
,
Z. M.
, 2007, “
Energy Pathways in Nanoscale Thermal Radiation
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
153101
.
21.
Lee
,
B. J.
, and
Zhang
,
Z. M.
, 2008, “
Lateral Shift in Near-Field Thermal Radiation With Surface Phonon Polaritons
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
12
, pp.
238
250
.
You do not currently have access to this content.