This paper presents a theoretical model for the radiative properties of fiber composites fabricated of spatially oriented fiber strands that contain closely spaced fibers in the Mie scattering regime. Dependent scattering within the dense fiber strands is accounted for by utilizing the solution of Maxwell’s equations that included the near field interaction of cylindrical waves. Scattering between strands is shown to be uncorrelated due to their macroscopic dimensions compared with the wavelength of the incident radiation. The model is called quasidependent scattering approximation (QDA), as the radiative properties are formulated as the uncorrelated sum of the dependent scattering properties of the constituent fiber strands. The extinction coefficient, scattering coefficient, and scattering phase function are derived for fiber composites of arbitrary internal architecture. The application of the QDA model is demonstrated by means of numerical analyses on two types of fiber composites.

1.
Cohen
,
L. D.
,
Haracz
,
R. D.
,
Cohen
,
A.
, and
Aquista
,
C.
, 1983, “
Scattering of Light From Arbitrarily Oriented Finite Cylinders
,”
Appl. Opt.
0003-6935,
22
, pp.
742
748
.
2.
Kerker
,
M.
, 1969,
The Scattering of Light and Other Electromagnetic Radiation
,
Academic
,
New York
.
3.
van de Hulst
,
H. C.
, 1981,
Light Scattering by Small Particles
,
Dover
,
New York
.
4.
Lee
,
S. C.
, 1994, “
Dependent vs Independent Scattering in Fibrous Composites Containing Parallel Fibers
,”
J. Thermophys. Heat Transfer
0887-8722,
8
(
4
), pp.
641
646
.
5.
van de Hulst
,
H. C.
, 1980,
Multiple Light Scattering: Tables, Formulas, and Applications
,
Academic
,
New York
.
6.
Mishchenko
,
M. I.
,
Travis
,
L. D.
, and
Lacis
,
A. A.
, 2006,
Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering
,
Cambridge University Press
,
Cambridge, England
.
7.
Mishchenko
,
M. I.
,
Videen
,
G.
,
Babenko
,
V. A.
,
Khlebtsov
,
N. G.
, and
Wriedt
,
T.
, 2004, “
T-Matrix Theory of Electromagnetic Scattering by Particles and Its Applications: A Comprehensive Reference Database
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
88
, pp.
357
406
.
8.
Twersky
,
V.
, 1952, “
Multiple Scattering of Radiation by an Arbitrary Configuration of Parallel Cylinders
,”
J. Acoust. Soc. Am.
0001-4966,
24
, pp.
42
46
.
9.
Oloafe
,
G. O.
, 1970, “
Scattering by an Arbitrary Configuration of Parallel Cylinders
,”
J. Opt. Soc. Am.
0030-3941,
60
, pp.
1233
1236
.
10.
Lee
,
S. C.
, 1992, “
Scattering by Closely-Spaced Radially Stratified Parallel Cylinders
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
48
(
2
), pp.
119
130
.
11.
Felbacq
,
D.
,
Tayeb
,
G.
, and
Maystre
,
D.
, 1994, “
Scattering by a Random Set of Parallel Cylinders
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis.
,
11
, pp.
2526
2538
. 1084-7529
12.
Rao
,
T. C.
, and
Barakat
,
R.
, 1994, “
Plane Wave Scattering by a Finite Array of Conducting Cylinders Partially Buried in a Ground Plane: TM Polarization
,”
Pure Appl. Opt.
0963-9659,
3
, pp.
1023
1048
.
13.
Borghi
,
R.
,
Gori
,
F.
,
Santarsiero
,
M.
,
Frezza
,
F.
, and
Schettini
,
G.
, 1996, “
Plane-Wave Scattering by a Set of Perfectly Conducting Circular Cylinder in the Presence of a Plane Surface
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis.
,
13
, pp.
2441
2456
. 1084-7529
14.
Lee
,
S. C.
, and
Grzesik
,
J. A.
, 1998, “
Light Scattering by Closely Spaced Parallel Cylinders Embedded in a Semi-infinite Dielectric Medium
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis.
,
15
, pp.
163
173
. 1084-7529
15.
Lee
,
S. C.
, 1999, “
Light Scattering by Closely Spaced Parallel Cylinders Embedded in a Finite Dielectric Slab
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis.
,
16
(
6
), pp.
1350
1361
. 1084-7529
16.
Radzevicius
,
S. J.
, and
Daniels
,
J. J.
, 2000, “
Ground Penetrating Radar Polarization and Scattering From Cylinders
,”
J. Appl. Geophys.
0926-9851,
45
(
2
), pp.
111
125
.
17.
Borghi
,
R.
,
Frezza
,
F.
,
Santarsiero
,
M.
, and
Schettini
,
G.
, 2000, “
Electromagnetic Scattering by Cylindrical Objects on Generic Planar Substrates: Cylindrical-Wave Approach
,”
Light Scattering From Microstructures
,
F.
Moreno
and
F.
González
, eds.,
Springer
,
Berlin
, pp.
97
111
.
18.
Di Vico
,
M.
,
Frezza
,
F.
,
Pajewski
,
L.
, and
Schettini
,
G.
, 2005, “
Scattering by a Finite Set of Perfectly Conducting Cylinders Buried in a Dielectric Half-Space: A Spectral-Domain Solution
,”
IEEE Trans. Antennas Propag.
0018-926X,
53
(
2
), pp.
719
727
.
19.
Jia
,
H.
, and
Yasumoto
,
K.
, 2005, “
Scattering and Absorption Characteristics of Multilayered Gratings Embedded in a Dielectric Slab
,”
Int. J. Infrared Millim. Waves
0195-9271,
26
(
8
), pp.
1111
1126
.
20.
Lee
,
S. C.
, 2006, “
Optical Extinction by Closely Spaced Parallel Cylinders Inside a Finite Dielectric Slab
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis.
,
23
(
9
), pp.
2219
2232
. 1084-7529
21.
Frezza
,
F.
,
Pajewski
,
L.
,
Ponti
,
C.
, and
Schettini
,
G.
, 2009, “
Scattering by Perfectly Conducting Circular Cylinders Buried in a Dielectric Slab Through the Cylindrical Wave Approach
,”
IEEE Trans. Antennas Propag.
0018-926X,
57
(
4
), pp.
1208
1217
.
22.
Bose
,
S. K.
, and
Mal
,
A. K.
, 1973, “
Longitudinal Shear Waves in Fiber-Reinforced Composite
,”
Int. J. Solids Struct.
0020-7683,
9
, pp.
1075
1085
.
23.
Mal
,
A. K.
, and
Chatterjee
,
A. K.
, 1977, “
The Elastic Moduli of a Fiber-Reinforced Composite
,”
ASME J. Appl. Mech.
0021-8936,
44
, pp.
61
67
.
24.
Varadan
,
V. K.
,
Varadan
,
V. V.
, and
Pao
,
Y. -H.
, 1978, “
Multiple Scattering of Elastic Waves by Cylinders of Arbitrary Cross Section. I. SH Waves
,”
J. Acoust. Soc. Am.
0001-4966,
63
, pp.
1310
1319
.
25.
Varadan
,
V. K.
, 1979, “
Scattering of Elastic Waves by Randomly Distributed and Oriented Scatterers
,”
J. Acoust. Soc. Am.
0001-4966,
65
(
3
), pp.
655
657
.
26.
Varadan
,
V. K.
,
Ma
,
Y.
, and
Varadan
,
V. V.
, 1986, “
Multiple Scattering of Compressional and Shear Waves by Fiber-Reinforced Composite Materials
,”
J. Acoust. Soc. Am.
0001-4966,
80
, pp.
333
339
.
27.
Lee
,
S. C.
, 1992, “
Effective Propagation Constant of Fibrous Media Containing Parallel Fibers in the Dependent Scattering Regime
,”
ASME J. Heat Transfer
0022-1481,
114
, pp.
473
478
.
28.
Liu
,
W.
, 1997, “
Multiple Wave Scattering and Calculated Effective Stiffness and Wave Properties in Unidirectional Fiber-Reinforced Composites
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
29.
Foldy
,
L. L.
, 1945, “
The Multiple Scattering of Waves, I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers
,”
Phys. Rev.
0096-8250,
67
(
3–4
), pp.
107
119
.
30.
Lax
,
M.
, 1952, “
Multiple Scattering of Waves. II. The Effective Field in Dense Systems
,”
Phys. Rev.
0096-8250,
85
, pp.
621
629
.
31.
Kumar
,
S.
, and
White
,
S.
, 1995, “
Dependent Scattering Properties of Woven Fibrous Insulations for Normal Incidence
,”
ASME J. Heat Transfer
0022-1481,
117
(
1
), pp.
160
166
.
32.
Chou
,
T. -W.
, 1992,
Microstructural Design of Fiber Composites
,
Cambridge University Press
,
Cambridge, England
.
33.
Lee
,
S. C.
, 2008, “
Scattering by a Dense Layer of Infinite Cylinders at Oblique Incidence
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis.
,
25
(
10
), pp.
2489
2498
. 1084-7529
34.
Wood
,
W. W.
, 1970, “
NpT-Ensemble Monte Carlo Calculations for the Hard Disk Fluid
,”
J. Chem. Phys.
0021-9606,
52
, pp.
729
741
.
You do not currently have access to this content.