A method for design and rating of shell-and-tube heat exchanger with helical baffles (STHXHB) has been developed in present study based on the public literatures and the widely used Bell–Delaware method for shell-and-tube heat exchanger with segmental baffles (STHXSB). A number of curve-type factors in the literature have all been replaced by mathematical expressions for the convenience of engineering design. The detailed calculation procedure of the method is provided. The accuracy of present method is validated with some experimental data. Four design cases of replacing original STHXsSB by STHXsHB are supplied, and the comparison results show that all of the STHXsHB have better performance than the original heat exchangers with segmental baffles.

1.
Master
,
B. I.
,
Chunangad
,
K. S.
, and
Pushpanathan
,
V.
, 2003, “
Fouling Mitigation Using Helixchanger Heat Exchangers
,”
Proceedings of the ECI Conference on Heat Exchanger Fouling and Cleaning: Fundamentals and Applications
, Santa Fe, NM, May 18–22, pp.
317
322
.
2.
Bell
,
K. J.
, 1981, “
Delaware Method for Shell Side Design
,”
Heat Exchangers Thermal Hydraulic Fundamentals and Design
,
S.
Kakac
,
A. E.
Bergles
, and
F.
Mayinger
, eds.,
Taylor & Francis
,
Washington, DC
.
3.
Bell
,
K. J.
, 1986, “
Delaware Method of Shell Side Design
,”
Heat Exchanger Sourcebook
,
J. W.
Pallen
, ed.,
Hemisphere
,
Washington, DC
.
4.
Bell
,
K. J.
, 1988, “
Delaware Method of Shell-Side Design
,”
Heat Transfer Equipment Design
,
R. K.
Shah
,
E. C.
Sunnarao
, and
R. A.
Mashelkar
, eds.,
Taylor & Francis
,
New York
.
5.
Bell
,
K. J.
, 2004, “
Heat Exchanger Design for the Process Industries
,”
ASME J. Heat Transfer
0022-1481,
126
(
6
), pp.
877
885
.
6.
Schlünder
,
E. U.
, ed., 1983,
Heat Exchanger Design Handbook
, Vol.
3
,
Hemisphere
,
Washington, DC
.
7.
Mukherjee
,
R.
, 1992, “
Use Double-Segmental Baffles in the Shell-and-Tube Heat Exchangers
,”
Chem. Eng. Prog.
0360-7275,
88
, pp.
47
52
.
8.
Saffar-Avval
,
M.
, and
Damangir
,
E.
, 1995, “
A General Correlation for Determining Optimum Baffle Spacing for All Types of Shell and Tube Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
13
), pp.
2501
2506
.
9.
Li
,
H. D.
, and
Kottke
,
V.
, 1998, “
Effect of Baffle Spacing on Pressure Drop and Local Heat Transfer in Shell-and-Tube Heat Exchangers for Staggered Tube Arrangement
,”
Int. J. Heat Mass Transfer
0017-9310,
41
(
10
), pp.
1303
1311
.
10.
Stehlík
,
P.
, and
Wadekar
,
V. V.
, 2002, “
Different Strategies to Improve Industrial Heat Exchange
,”
Heat Transfer Eng.
0145-7632,
23
(
6
), pp.
36
48
.
11.
Khalifeh Soltan
,
B.
,
Saffar-Avval
,
M.
, and
Damangir
,
E.
, 2004, “
Minimization of Capital and Operating Costs of Shell and Tube Condensers Using Optimum Baffle Spacing
,”
Appl. Therm. Eng.
1359-4311,
24
(
17–18
), pp.
2801
2810
.
12.
Lutcha
,
J.
, and
Nemcansky
,
J.
, 1990, “
Performance Improvement of Tubular Heat Exchangers by Helical Baffles
,”
Trans. Inst. Chem. Eng., Part A
0263-8762,
68
, pp.
263
270
.
13.
Stehlik
,
P.
,
Nemcansky
,
J.
, and
Kral
,
D.
, 1994, “
Comparison of Correction Factors for Shell-and-Tube Heat Exchangers With Segmental or Helical Baffles
,”
Heat Transfer Eng.
0145-7632,
15
(
1
), pp.
55
65
.
14.
Kral
,
D.
,
Stelik
,
P.
,
Van Der Ploeg
,
H. J.
, and
Masster
,
B. I.
, 1996, “
Helical Baffles in Shell-and-Tube Heat Exchangers, Part One: Experimental Verification
,”
Heat Transfer Eng.
0145-7632,
17
(
1
), pp.
93
101
.
15.
Zhang
,
J. F.
,
Li
,
B.
,
Huang
,
W. J.
,
Lei
,
Y. G.
,
He
,
Y. -L.
, and
Tao
,
W. Q.
, 2009, “
Experimental Performance Comparison of Shell Side Heat Transfer for Shell-and-Tube Heat Exchangers With Middle-Overlapped Helical Baffles and Segmental Baffles
,”
Chem. Eng. Sci.
0009-2509,
64
, pp.
1643
1653
.
16.
Shuli
,
W.
, 2002, “
Hydrodynamic Studies on Heat Exchangers With Helical Baffles
,”
Heat Transfer Eng.
0145-7632,
23
(
3
), pp.
43
49
.
17.
Zhnegguo
,
Z.
,
Tao
,
X.
, and
Xiaoming
,
F.
, 2004, “
Experimental Study on Heat Transfer Enhancement of a Helically Baffled Heat Exchanger Combined With Three-Dimensional Finned Tubes
,”
Appl. Therm. Eng.
1359-4311,
24
(
14–15
), pp.
2293
2300
.
18.
Peng
,
B.
,
Wang
,
Q. W.
,
Zhang
,
C.
,
Xie
,
G. N.
,
Luo
,
L. Q.
,
Chen
,
Q. Y.
, and
Zeng
,
M.
, 2007, “
An Experimental Study of Shell-and-Tube Heat Exchangers With Continuous Helical Baffles
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1425
1431
.
19.
Lei
,
Y. G.
,
He
,
Y. L.
,
Chu
,
P.
, and
Li
,
R.
, 2008, “
Design and Optimization of Heat Exchangers With Helical Baffles
,”
Chem. Eng. Sci.
0009-2509,
63
, pp.
4386
4395
.
20.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1974, “
A Calculation Procedure for the Transient and Steady State Behavior of Shell-and-Tube Heat Exchanger
,”
Heat Exchanger Design and Theory Source Book
,
N. F.
Afgan
and
E. U.
Schlunder
, eds.,
McGraw-Hill
,
New York
.
21.
Butterworth
,
D.
, 1978, “
A Model for Heat Transfer During Three-Dimensional Flow in Tube Bundles
,”
Sixth International Heat Transfer Conference
, Toronto, Canada, Paper No. HX-6.
22.
Sha
,
W. T.
, 1980, “
An Overview on Rod-Bundle Thermal-Hydraulic Analysis
,”
Nucl. Eng. Des.
0029-5493,
62
, pp.
1
24
.
23.
Sha
,
W. T.
,
Yang
,
C. I.
,
Kao
,
T. T.
, and
Cho
,
S. M.
, 1982, “
Multi-Dimensional Numerical Modeling of Heat Exchangers
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
417
425
.
24.
Prithiviraj
,
M.
, and
Andrews
,
M. J.
, 1998, “
Three-Dimensional Numerical Simulation of Shell-and-Tube Heat Exchanger. Part I: Foundation and Fluid Mechanics
,”
Numer. Heat Transfer, Part A
1040-7782,
33
, pp.
799
816
.
25.
Prithiviraj
,
M.
, and
Andrews
,
M. J.
, 1998, “
Three-Dimensional Numerical Simulation of Shell-and-Tube Heat Exchanger. Part II: Heat Transfer
,”
Numer. Heat Transfer, Part A
1040-7782,
33
, pp.
817
828
.
26.
Prithiviraj
,
M.
, and
Andrews
,
M. J.
, 1999, “
Comparison of a Three-Dimensional Numerical Model With Existing Methods for Prediction of Flow in Shell-and-Tube Heat Exchangers
,”
Heat Transfer Eng.
0145-7632,
20
(
2
), pp.
15
19
.
27.
Deng
,
B.
, 2003, “
Experimental and Numerical Study of Flow and Heat Transfer in the Shell Side of Heat Exchangers
,” Ph.D. thesis, Xi’an Jiaotong University, Xi’an, China.
28.
Andrews
,
M. J.
, and
Master
,
B. I.
, 1999, “
3-D Modeling of the ABB Lummus Heat Transfer Helixchanger Using CFD
,”
International Conference on Compact Heat Exchangers
, Banff, Canada.
29.
Andrews
,
M. J.
, and
Master
,
B. I.
, 2005, “
Three-Dimensional Modeling of a Helixchanger® Heat Exchanger Using CFD
,”
Heat Transfer Eng.
0145-7632,
26
, pp.
22
31
.
30.
Schröder
,
K.
, and
Gelbe
,
H.
, 1999, “
Two- and Three-Dimensional CFD-Simulation of Flow-Induced Vibration Excitation in Tube Bundles
,”
Chem. Eng. Process.
0255-2701,
38
, pp.
621
629
.
31.
Mohr
,
U.
, and
Gelbe
,
H.
, 2000, “
Velocity Distribution and Vibration Excitation in Tube Bundle Heat Exchangers
,”
Int. J. Therm. Sci.
1290-0729,
39
, pp.
414
421
.
32.
Philpott
,
C.
, and
Deans
,
J.
, 2004, “
The Enhancement of Steam Condensation Heat Transfer in a Horizontal Shell and Tube Condenser by Addition of Ammonia
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3683
3693
.
33.
Karlsson
,
T.
, and
Vamling
,
L.
, 2005, “
Flow Fields in Shell-and-Tube Condensers: Comparison of a Pure Refrigerant and a Binary Mixture
,”
Int. J. Refrig.
0140-7007,
28
, pp.
706
713
.
34.
Lee
,
S. H.
, and
Hur
,
N.
, 2007, “
Numerical Analysis of the Fluid Flow and Heat Transfer in a Shell and Tube Heat Exchanger
,”
Proceedings of the First Asian Symposium on Computational Heat Transfer and Fluid Flow
, Xi’an, China.
35.
Shen
,
R. J.
,
Feng
,
X.
, and
Gao
,
X. D.
, 2004, “
Mathematical Model and Numerical Simulation of Helical Baffles Heat Exchanger
,”
J. Enhanced Heat Transfer
1065-5131,
11
, pp.
461
466
.
36.
Lei
,
Y. G.
,
He
,
Y. L.
,
Li
,
R.
, and
Gao
,
Y. F.
, 2008, “
Effects of Baffle Inclination Angle on Flow and Heat Transfer of a Heat Exchanger With Helical Baffles
,”
Chem. Eng. Process.
0255-2701,
47
(
12
), pp.
2336
2345
.
37.
Jafari Nasr
,
M. R.
, and
Shafeghat
,
A.
, 2008, “
Fluid Flow Analysis and Extension of Rapid Design Algorithm for Helical Baffle Heat Exchangers
,”
Appl. Therm. Eng.
1359-4311,
28
, pp.
1324
1332
.
38.
Zhang
,
J. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, 2009, “
3D Numerical Simulation on Shell-and-Tube Heat Exchangers With Middle-Overlapped Helical Baffles and Continuous Baffles—Part I: Numerical Model and Results of Whole Heat Exchanger With Middle-Overlapped Helical Baffles
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
23-24
), pp.
5371
5380
.
39.
Zhang
,
J. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, 2009, “
3D Numerical Simulation on Shell-and-Tube Heat Exchangers With Middle-Overlapped Helical Baffles and Continuous Baffles—Part II: Simulation Results of Periodic Model and Comparison Between Continuous and Noncontinuous Helical Baffles
,”
Int. J. Heat Mass Transfer
0017-9310
52
(
23-24
), pp.
5381
5389
.
40.
Kern
,
D. Q.
, 1950,
Process Heat Transfer
,
McGraw-Hill
,
New York
.
41.
Tinker
,
T.
, 1958, “
Shell-Side Characteristics of Shell-and-Tube Heat Exchangers: A Simplified Rating System for Commercial Heat Exchangers
,”
Trans. ASME
0097-6822,
80
, pp.
36
52
.
42.
Palen
,
J. W.
, and
Taborek
,
J.
, 1969, “
Solution of Shell Side Flow Pressure Drop and Heat Transfer by Stream Analysis Method
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
65
(
93
), pp.
53
63
.
43.
Reppich
,
M.
, and
Zagermann
,
S.
, 1995, “
A New Design Method for Segmentally Baffled Heat Exchangers
,”
Comput. Chem. Eng.
0098-1354,
19
, pp.
S137
S142
.
44.
Serna
,
M.
, and
Jimmenez
,
A.
, 2004, “
An Efficient Method for the Design of Shell and Tube Heat Exchangers
,”
Heat Transfer Eng.
0145-7632,
25
(
2
), pp.
5
16
.
45.
Kara
,
Y. A.
, and
Güraras
,
Ö.
, 2004, “
A Computer Program for Designing of Shell-and-Tube Heat Exchangers
,”
Appl. Therm. Eng.
1359-4311,
24
(
13
), pp.
1797
1805
.
46.
Del Col
,
D.
,
Muzzolon
,
A.
,
Piubello
,
P.
, and
Rosetto
,
L.
, 2005, “
Measurement and Prediction of Evaporator Shell-Side Pressure Drop
,”
Int. J. Refrig.
0140-7007,
28
, pp.
320
330
.
47.
Ayub
,
Z. H.
, 2005, “
A New Chart Method for Evaluating Single-Phase Shell Side Heat Transfer Coefficient in a Single Segmental Shell and Tube Heat Exchanger
,”
Appl. Therm. Eng.
1359-4311,
25
(
14–15
), pp.
2412
2420
.
48.
Selbas
,
R.
,
Önder
,
K.
, and
Reppich
,
M.
, 2006, “
A New Design Approach for Shell-and-Tube Heat Exchangers Using Genetic Algorithms From Economic Point of View
,”
Chem. Eng. Process.
0255-2701,
45
(
4
), pp.
268
275
.
49.
Caputo
,
A. C.
,
Pelagagge
,
P. M.
, and
Salini
,
P.
, 2008, “
Heat Exchanger Design Based on Economic Optimization
,”
Appl. Therm. Eng.
1359-4311,
28
(
10
), pp.
1151
1159
.
50.
Fesanghary
,
M.
,
Damangir
,
E.
, and
Soleimani
,
I.
, 2009, “
Design Optimization of Shell and Tube Heat Exchangers Using Global Sensitivity Analysis and Harmony Search Algorithm
,”
Appl. Therm. Eng.
1359-4311,
29
(
5–6
), pp.
1026
1031
.
51.
Ponce-Ortega
,
J.
,
Serna-González
,
M.
, and
Jiménez-Gutiérrez
,
A.
, 2009, “
Use of Genetic Algorithms for the Optimal Design of Shell-and-Tube Heat Exchangers
,”
Appl. Therm. Eng.
1359-4311,
29
(
2–3
), pp.
203
209
.
52.
Schlünder
,
E. U.
, ed., 1983,
Heat Exchanger Design Handbook
, Vol.
2
,
Hemisphere
,
Washington, DC
.
53.
Gaddis
,
E. S.
, and
Gnielinski
,
V.
, 1997, “
Pressure Drop on the Shell Side of Shell-and-Tube Heat Exchangers With Segmental Baffles
,”
Chem. Eng. Process.
0255-2701,
36
(
2
), pp.
149
159
.
54.
Kuppan
,
T.
, 2000,
Heat Exchanger Design Handbook
,
Marcel Dekker
,
New York
.
55.
Li
,
B.
, 2007, “
Numerical Simulation and Experimental Study on Heat Transfer Enhancement in Air and Oil Heat Transfer Equipment
,” Ph.D. thesis, Xi’an Jiaotong University, Xi’an, China.
56.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Heat and Mass Transfer
, 5th ed.,
Wiley
,
New York
.
57.
Yang
,
S. M.
, and
Tao
,
W. Q.
, 1998,
Heat Transfer
, 3rd ed.,
High Education
,
Beijing, China
.
58.
Gnielinski
,
V.
, 1976, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flows
,”
Int. Chem. Eng.
0020-6318,
16
, pp.
359
368
.
You do not currently have access to this content.