This paper aims to study the effect of particle migration on flow and heat transfer of nanofluids flowing through a circular pipe. To do this, a two-component model proposed by Buongiorno (2006, “Convective Transport in Nanofluids,” ASME J. Heat Transfer, 128, pp. 240–250) was used and a numerical study on laminar flow of alumina-water nanofluid through a constant wall temperature tube was performed. The effects of nonuniform distribution of particles on heat-transfer coefficient and wall shear stress are shown. Obtained results illustrate that by considering the particle migration, the heat-transfer coefficient increases while the wall shear stress decreases, compared with uniform volume fraction. Thus, it can be concluded that the enhancement of the convective heat transfer could not be solely attributed to the enhancement of the effective thermal conductivity, and beside other reasons, which may be listed as this higher enhancement, particle migration is proposed to be an important reason.

1.
Choi
,
S.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
and
H. P.
Wang
, eds.,
ASME
,
New York
, FED-Vol.
231
/MD-Vol. 66, pp.
99
105
.
2.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
, 2009, “
New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
363
371
.
3.
Lee
,
J. H.
,
Hwang
,
K. S.
,
Jang
,
S. P.
,
Lee
,
B. H.
,
Kim
,
J. H.
,
Choi
,
S. U. S.
, and
Choi
,
Ch. J.
, 2008, “
Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
2651
2656
.
4.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, 2008, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
1290-0729,
47
, pp.
560
568
.
5.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
6.
Hwang
,
Y.
,
Lee
,
J. K.
,
Lee
,
C. H.
,
Jung
,
Y. M.
,
Cheong
,
S. I.
,
Lee
,
C. G.
,
Ku
,
B. C.
, and
Jang
,
S. P.
, 2007, “
Stability and Thermal Conductivity Characteristics of Nanofluids
,”
Thermochim. Acta
0040-6031,
455
, pp.
70
74
.
7.
Zhu
,
D.
,
Li
,
X.
,
Wang
,
N.
,
Wang
,
X.
,
Gao
,
J.
, and
Li
,
H.
, 2009, “
Dispersion Behavior and Thermal Conductivity Characteristics of Al2O3–H2O Nanofluids
,”
Curr. Appl. Phys.
1567-1739,
9
, pp.
131
139
.
8.
Pak
,
B. C.
, and
Cho
,
Y. I.
, 1998, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
0891-6152,
11
(
2
), pp.
151
170
.
9.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2004, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
1388-0764,
6
, pp.
577
588
.
10.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2006, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
588
595
.
11.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4316
4318
.
12.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2007, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
617
623
.
13.
Wen
,
D.
, and
Ding
,
Y.
, 2004, “
Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5181
5188
.
14.
Zeinali Heris
,
S.
,
Nasr Esfahany
,
M.
, and
Etemad
,
S. Gh.
, 2007, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
203
210
.
15.
Raisee
,
M.
, and
Moghaddami
,
M.
, 2008, “
Numerical Investigation of LAMINAR Forced Convection of Nanofluids Through Circular Pipes
,”
J. Enhanced Heat Transfer
1065-5131,
15
, pp.
335
350
.
16.
Hwang
,
K. S.
,
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2009, “
Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
193
199
.
17.
Sohn
,
C. W.
, and
Chen
,
M. M.
, 1981, “
Microconvective Thermal Conductivity in Disperse Two-Phase Mixture as Observed in a Low Velocity Couette Flow Experiment
,”
ASME J. Heat Transfer
0022-1481,
103
, pp.
47
51
.
18.
Xuan
,
Y.
, and
Li
,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
151
155
.
19.
Xuan
,
Y.
, and
Roetzel
,
W.
, 2000, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3701
3707
.
20.
Liu
,
Sh.
, 1999, “
Particle Dispersion for Suspension Flow
,”
Chem. Eng. Sci.
0009-2509,
54
, pp.
873
891
.
21.
Wen
,
D.
, and
Ding
,
Y.
, 2005, “
Effect of Particle Migration on Heat Transfer in Suspensions of Nanoparticles Flowing Through Minichannels
,”
Microfluid. Nanofluid.
1613-4982,
1
, pp.
183
189
.
22.
Buongiorno
,
J.
, 2006, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
240
250
.
23.
Zhou
,
S. -Q.
, and
Ni
,
R.
, 2008, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
093123
.
24.
Williams
,
W. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2008, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
042412
.
25.
Rea
,
U.
,
McKrell
,
T.
,
Hu
,
L. W.
, and
Buongiorno
,
J.
, 2009, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina-Water and Zirconia-Water Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
2042
2048
.
26.
McNab
,
G. S.
, and
Meisen
,
A.
, 1973, “
Thermophoresis in Liquids
,”
J. Colloid Interface Sci.
0021-9797,
44
, pp.
339
346
.
27.
Brenner
,
H.
, and
Bielenberg
,
J. R.
, 2005, “
A Continuum Approach to Phoretic Motions: Thermophoresis
,”
Physica A
0378-4371,
355
, pp.
251
273
.
28.
Bielenberg
,
J. R.
, and
Brenner
,
H.
, 2005, “
A Hydrodynamic/Brownian Motion Model of Thermal Diffusion in Liquids
,”
Physica A
0378-4371,
356
, pp.
279
293
.
29.
Braibanti
,
M.
,
Vigolo
,
D.
, and
Piazza
,
R.
, 2008, “
Does Thermophoretic Mobility Depend on Particle Size?
,”
Phys. Rev. Lett.
0031-9007,
100
, pp.
108303
.
30.
Tzou
,
D. Y.
, 2008, “
Instability of Nanofluids in Natural Convection
,”
ASME J. Heat Transfer
0022-1481,
130
, pp.
072401
.
31.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
, 2009, “
Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
0017-9310, in press.
32.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
33.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts, Supplement 1 to Advances in Heat Transfer
,
Academic
,
New York
.
34.
Shah
,
R. K.
, and
Bhatti
,
M. S.
, 1987, “
Laminar Convective Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
, Chap. 3.
35.
Hagen
,
K. D.
, 1999,
Heat Transfer With Applications
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
637
638
.
You do not currently have access to this content.