A meshless finite difference method is developed for solving conjugate heat transfer problems. Starting with an arbitrary distribution of mesh points, derivatives are evaluated using a weighted least-squares procedure. The resulting system of algebraic equations is sparse and is solved using an algebraic multigrid method. The implementation of the Neumann, Dirichlet, and mixed boundary conditions within this framework is described. For conjugate heat transfer problems, continuity of the heat flux and temperature are imposed on mesh points at multimaterial interfaces. The method is verified through application to classical heat conduction problems with known analytical solutions. It is then applied to the solution of conjugate heat transfer problems in complex geometries, and the solutions so obtained are compared with more conventional unstructured finite volume methods. The method improves on existing meshless methods for conjugate heat conduction by eliminating spurious oscillations previously observed. Metrics for accuracy are provided and future extensions are discussed.

1.
Belytschko
,
T.
,
Krongauz
,
Y.
,
Organ
,
D.
,
Fleming
,
M.
, and
Krysl
,
P.
, 1996, “
Meshless Methods: An Overview and Recent Developments
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
139
, pp.
3
47
.
2.
Li
,
S.
, and
Liu
,
W. K.
, 2002, “
Meshfree and Particle Methods and Their Applications
,”
Appl. Mech. Rev.
0003-6900,
55
(
1
), pp.
1
34
.
3.
Babuška
,
I.
,
Banerjee
,
U.
, and
Osborn
,
J.
, 2003, “
Survey of Meshless and Generalized Finite Element Methods: A Unified Approach
,”
Acta Numerica
0962-4929,
12
, pp.
1
125
.
4.
Lucy
,
L. B.
, 1977, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astron. J.
0004-6256,
82
, pp.
1013
24
.
5.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
, 1977, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
0035-8711,
181
, pp.
375
389
.
6.
Duarte
,
C. A.
, and
Oden
,
J. T.
, 1998, “
H-p Clouds—An h-p Meshless Method
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
12
, pp.
673
705
.
7.
Oñate
,
E.
,
Idelsohn
,
S.
,
Zienkiewicz
,
O.
,
Taylor
,
R.
, and
Sacco
,
C.
, 1996, “
A Stabilized Finite Point Method for Analysis of Fluid Mechanics Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
139
, pp.
315
346
.
8.
Oñate
,
E.
, 1998, “
Derivation of Stabilized Equations for Numerical Solution of Advective-Diffusive Transport and Fluid Flow Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
151
, pp.
233
265
.
9.
Oñate
,
E.
,
García
,
J.
, and
Idelsohn
,
S.
, 1997, “
Computation of the Stabilization Parameter for the Finite Element Solution of Advective-Diffusive Problems
,”
Int. J. Numer. Methods Fluids
0271-2091,
25
, pp.
1385
1407
.
10.
Idelsohn
,
S. R.
,
Oñate
,
E.
,
Calvo
,
N.
, and
Pin
,
F. D.
, 2003, “
The Meshless Finite Element Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
58
, pp.
893
912
.
11.
Oñate
,
E.
, 2000, “
A Stabilized Finite Element Method for Incompressible Viscous Flows Using a Finite Increment Calculus Formulation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
182
, pp.
355
370
.
12.
Oñate
,
E.
, and
Idelsohn
,
S.
, 1998, “
A Mesh-Free Finite Point Method for Advective-Diffusive Transport and Fluid Flow Problems
,”
Comput. Mech.
0178-7675,
21
, pp.
283
292
.
13.
Oñate
,
E.
,
Sacco
,
C.
, and
Idelsohn
,
S.
, 2000, “
A Finite Point Method for Incompressible Flow Problems
,”
Comput. Visualization Sci.
1432-9360,
3
, pp.
65
75
.
14.
Idelsohn
,
S. R.
,
Oñate
,
E.
, and
Pin
,
F. D.
, 2004, “
The Particle Finite Element Method: A Powerful Tool to Solve Incompressible Flows With Free-Surfaces and Breaking Waves
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
964
989
.
15.
Löhner
,
R.
,
Sacco
,
C.
,
Oñate
,
E.
, and
Idelsohn
,
S.
, “
A Finite Point Method for Compressible Flow
,” Technical Report No. MS 4C7, School of Computational Science and Informatics, George Mason University.
16.
Aluru
,
N. R.
, and
Li
,
G.
, 2001, “
Finite Cloud Method: A True Meshless Technique Based on a Fixed Reproducing Kernel Approximation
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
(
10
), pp.
2373
2410
.
17.
Sadat
,
H.
,
D.
,
N.
,
Gbahoue
,
L.
, and
Sophy
,
T.
, 2006. “
On the Solution of Heterogeneous Heat Conduction Problems by a Diffuse Approximation Meshless Method
,”
Numer. Heat Transfer, Part B
1040-7790,
50
, pp.
491
498
.
18.
Fang
,
J.
,
Zhao
,
G.
,
Zhao
,
J.
, and
Parriaux
,
A.
, 2009, “
On the Truly Meshless Solution of Heat Conduction Problems in Heterogeneous Media
,”
Numer. Heat Transfer, Part B
1040-7790,
55
(
1
), pp.
1
13
.
19.
Lancaster
,
P.
, and
Salkauskas
,
K.
, 1981, “
Surfaces Generated by Moving Least Squares Methods
,”
Math. Comput.
0025-5718,
155
(
37
), pp.
141
148
.
20.
Finkel
,
R. A.
, and
Bentley
,
J. L.
, 1974, “
Quad Trees a Data Structure for Retrieval on Composite Keys
,”
Acta Informatica
0001-5903,
4
, pp.
1
9
.
21.
Hutchinson
,
B. R.
, and
Raithby
,
G. D.
, 1986, “
A Multigrid Method Based on the Additive Correction Strategy
,”
Numer. Heat Transfer, Part A
1040-7782,
9
(
5
), pp.
511
537
.
22.
Mathur
,
S.
, and
Murthy
,
J. Y.
, 1997, “
A Pressure-Based Method for Unstructured Meshes
,”
Numer. Heat Transfer
0149-5720,
31
(
2
), pp.
195
215
.
23.
2006.
FLUENT 6.3 Users’ Guide
,
Fluent Inc.
,
Lebanon, NH
.
24.
Incropera
,
F. P.
,
de Witt
,
D. P.
,
Bergman
,
T. L.
, and
Levine
,
A. S.
, 2007,
Introduction to Heat Transfer
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.