Due to their unique one-dimensional nanostructure along with excellent mechanical, electrical, and optical properties, carbon nanotubes (CNTs) become a promising material for diverse nanotechnology applications. However, large-scale and structure controlled synthesis of CNTs still have many difficulties due to the lack of understanding of the fundamental growth mechanism of CNTs, as well as the difficulty of controlling atomic-scale physical and chemical reactions during the nanotube growth process. Especially, controlling the number of graphene wall, diameter, and chirality of CNTs are the most important issues that need to be solved to harness the full potential of CNTs. Here we report the large-scale selective synthesis of vertically aligned single walled carbon nanotubes (SWNTs) and double walled carbon nanotubes (DWNTs) by controlling the size of catalyst nanoparticles in the highly effective oxygen assisted thermal chemical vapor deposition (CVD) process. We also demonstrate a simple but powerful strategy for synthesizing ultrahigh density and diameter selected vertically aligned SWNTs through the precise control of carbon flow during a thermal CVD process.

1.
Iijima
,
S.
, and
Ichihashi
,
T.
, 1993, “
Single-Shell Carbon Nanotubes of 1-nm Diameter
,”
Nature (London)
0028-0836,
363
(
6430
), pp.
603
605
.
2.
Ajayan
,
P.
, 1999, “
Nanotubes From Carbon
,”
Chem. Rev.
0009-2665,
99
(
7
), pp.
1787
1800
.
3.
Graham
,
A. P.
,
Duesberg
,
G. S.
,
Seidel
,
R. V.
,
Liebau
,
M.
,
Unger
,
E.
,
Pamler
,
W.
,
Kreupl
,
F.
, and
Hoenlein
,
W.
, 2005, “
Carbon Nanotubes for Microelectronics?
,”
Small
1613-6810,
1
(
4
), pp.
382
390
.
4.
Küttel
,
O. M.
,
Groening
,
O.
,
Emmenegger
,
C.
, and
Schlapbach
,
L.
, 1998, “
Electron Field Emission From Phase Pure Nanotube Films Grown in a Methane/Hydrogen Plasma
,”
Appl. Phys. Lett.
0003-6951,
73
(
15
), pp.
2113
2115
.
5.
Ngo
,
Q.
,
Cruden
,
B. A.
,
Cassell
,
A. M.
,
Sims
,
G.
,
Meyyappan
,
M.
,
Li
,
J.
, and
Yang
,
C. Y.
, 2004, “
Thermal Interface Properties of Cu-Filled Vertically Aligned Carbon Nanofiber Arrays
,”
Nano Lett.
1530-6984,
4
(
12
), pp.
2403
2407
.
6.
Cheng
,
H.
,
Li
,
F.
,
Sun
,
X.
,
Brown
,
S.
,
Pimenta
,
M.
,
Marucci
,
A.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M.
, 1998, “
Bulk Morphology and Diameter Distribution of Single-Walled Carbon Nanotubes Synthesized by Catalytic Decomposition of Hydrocarbons
,”
Chem. Phys. Lett.
0009-2614,
289
(
5–6
), pp.
602
610
.
7.
Ci
,
L.
,
Xie
,
S.
,
Tang
,
D.
,
Yan
,
X.
,
Li
,
Y.
,
Liu
,
Z.
,
Zou
,
X.
,
Zhou
,
W.
, and
Wang
,
G.
, 2001, “
Controllable Growth of Single Wall Carbon Nanotubes by Pyrolizing Acetylene on the Floating Iron Catalysts
,”
Chem. Phys. Lett.
0009-2614,
349
(
3–4
), pp.
191
195
.
8.
Colomer
,
J.
,
Benoit
,
J.
,
Stephan
,
C.
,
Lefrant
,
S.
,
Van Tendeloo
,
G.
, and
Nagy
,
J. B.
, 2001, “
Characterization of Single-Wall Carbon Nanotubes Produced by CCVD Method
,”
Chem. Phys. Lett.
0009-2614,
345
(
1–2
), pp.
11
17
.
9.
Colomer
,
J.
,
Stephan
,
C.
,
Lefrant
,
S.
,
Van Tendeloo
,
G.
,
Willems
,
I.
,
Kónya
,
Z.
,
Fonseca
,
A.
,
Laurent
,
C.
, and
Nagy
,
J.
, 2000, “
Large-Scale Synthesis of Single-Wall Carbon Nanotubes by Catalytic Chemical Vapor Deposition (CCVD) Method
,”
Chem. Phys. Lett.
0009-2614,
317
(
1–2
), pp.
83
89
.
10.
Nikolaev
,
P.
,
Bronikowski
,
M.
,
Bradley
,
R.
,
Rohmund
,
F.
,
Colbert
,
D.
,
Smith
,
K.
, and
Smalley
,
R.
, 1999, “
Gas-Phase Catalytic Growth of Single-Walled Carbon Nanotubes From Carbon Monoxide
,”
Chem. Phys. Lett.
0009-2614,
313
(
1–2
), pp.
91
97
.
11.
Satishkumar
,
B.
,
Govindaraj
,
A.
,
Sen
,
R.
, and
Rao
,
C.
, 1998, “
Single-Walled Nanotubes by the Pyrolysis of Acetylene-Organometallic Mixtures
,”
Chem. Phys. Lett.
0009-2614,
293
(
1–2
), pp.
47
52
.
12.
Zhou
,
W.
,
Ooi
,
Y.
,
Russo
,
R.
,
Papanek
,
P.
,
Luzzi
,
D.
,
Fischer
,
J.
,
Bronikowski
,
M.
,
Willis
,
P.
, and
Smalley
,
R.
, 2001, “
Structural Characterization and Diameter-Dependent Oxidative Stability of Single Wall Carbon Nanotubes Synthesized by the Catalytic Decomposition of Co
,”
Chem. Phys. Lett.
0009-2614,
350
(
1–2
), pp.
6
14
.
13.
Hahm
,
M. G.
,
Kwon
,
Y. -K.
,
Lee
,
E.
,
Ahn
,
C. W.
, and
Jung
,
Y. J.
, 2008, “
Diameter Selective Growth of Vertically Aligned Single Walled Carbon Nanotubes and Study on Their Growth Mechanism
,”
J. Phys. Chem. C
1932-7447,
112
(
44
), pp.
17143
17147
.
14.
Murakami
,
Y.
,
Chiashi
,
S.
,
Miyauchi
,
Y.
,
Hum
,
M.
,
Ogura
,
M.
,
Okubo
,
T.
, and
Maruyama
,
S.
, 2004, “
Growth of Vertically Aligned Single-Walled Carbon Nanotube Films on Quartz Substrates and Their Optical Anisotropy
,”
Chem. Phys. Lett.
0009-2614,
385
, pp.
298
303
.
15.
Hata
,
K.
,
Futaba
,
D. N.
,
Mizuno
,
K.
,
Namai
,
T.
,
Yumura
,
M.
, and
Iijima
,
S.
, 2004, “
Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes
,”
Science
0036-8075,
306
, pp.
1362
1364
.
16.
Jorio
,
A.
,
Pimenta
,
M. A.
,
Souza Filho
,
A. G.
,
Saito
,
R.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 2003, “
Characterizing Carbon Nanotube Samples With Resonance Raman Scattering
,”
New J. Phys.
1367-2630,
5
, pp.
139.1
139.17
.
17.
Ihm
,
J.
,
Zunger
,
A.
, and
Cohen
,
M. L.
, 1980, “
Momentum-Space Formalism for the Total Energy of Solids
,”
J. Phys. C
0022-3719,
13
, pp.
3095
.
18.
Kohn
,
W.
and
Sham
,
L.
, 1965, “
Self-Consistent Equations Including Exchange and Correlation Effects
,”
Phys. Rev.
0031-899X,
140
, pp.
A1133
A1138
.
19.
Payne
,
M. C.
,
Teter
,
M. P.
,
Allan
,
D. C.
,
Arias
,
T. A.
, and
Joannopoulos
,
J. D.
, 1992, “
Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients
,”
Rev. Mod. Phys.
0034-6861,
64
, pp.
1045
1097
.
You do not currently have access to this content.