Spherical glass and copper beads have been used to create bead packed porous structures for an investigation of two-phase heat transfer bubble dynamics under geometric constraints. The results demonstrated a variety of bubble dynamics characteristics under a range of heating conditions. The bubble generation, growth, and detachment during the nucleate pool boiling heat transfer have been filmed, the heating surface temperatures and heat flux were recorded, and theoretical models have been employed to study bubble dynamic characteristics. Computer simulation results were combined with experimental observations to clarify the details of the vapor bubble growth process and the liquid water replenishing the inside of the porous structures. This investigation has clearly shown, with both experimental and computer simulation evidence, that the millimeter scale bead packed porous structures could greatly influence pool boiling heat transfer by forcing a single bubble to depart at a smaller size, as compared with that in a plain surface situation at low heat flux situations, and could trigger the earlier occurrence of critical heat flux by trapping the vapor into interstitial space and forming a vapor column net at high heat flux situations. The results also proved data for further development of theoretical models of pool boiling heat transfer in bead packed porous structures.

1.
Peterson
,
G. P.
, 1994,
An Introduction to Heat Pipe: Modeling, Testing and Applications
,
Wiley
,
New York
.
2.
Faghri
,
A.
, 1995,
Heat Pipe Science and Technology
,
Taylor & Francis
,
Washington, DC
.
3.
Wang
,
Y.
, and
Cheng
,
P.
, 1997, “
Multiphase Flow and Heat Transfer in Porous Media
,”
Advances in Heat Transfer
,
J. P.
Hartnet
,
T. F.
Irvine
,
Y. I.
Cho
, and
G. A.
Greene
, eds.,
Academic
,
New York
, Vol.
30
, pp.
93
196
.
4.
Zhao
,
T. S.
, and
Cheng
,
P.
, 1998, “
Heat Transfer in Oscillatory Flows
,”
Annual Review of Heat Transfer
,
C. -L.
Tien
, ed.,
Begell House Publishers
,
New York
, Vol.
9
, Chap. 7.
5.
Zhao
,
T. S.
,
Kreuer
,
K. -D.
, and
Van Nguyen
,
T.
, 2007,
Advances in Fuel Cell
,
Elsevier
,
New York
, Vol.
1
.
6.
Zawodzinski
,
T. A.
,
Derouin
,
C.
,
Radzinski
,
S.
,
Sherman
,
R. J.
,
Smith
,
V. T.
,
Springer
,
T. E.
, and
Gottesfeld
,
S.
, 1993, “
Water Uptake by and Transport Through Nafion® 117 Membranes
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
1041
1047
.
7.
Geiger
,
A. B.
,
Tsukada
,
A.
,
Lehmann
,
E.
,
Vontobel
,
P.
,
Wokaun
,
A.
, and
Scherer
,
G. G.
, 2002, “
In Situ Investigation of the Two-Phase Flow Patterns in Flow Fields of Polymer Electrolyte Fuel Cells by Neutron Radiography and Locally Resolved Current Measurements
,”
Proceedings of the 2002 Fuel Cell Seminar
, Palm Springs, CA, Nov. 18–21, pp.
125
161
.
8.
Liter
,
S. G.
, and
Kaviany
,
M.
, 2001, “
Pool-Boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4287
4311
.
9.
Hwang
,
G. S.
, and
Kaviany
,
M.
, 2006, “
Critical Heat Flux in Thin, Uniform Particle Coatings
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
844
849
.
10.
Li
,
C.
,
Peterson
,
G. P.
, and
Wang
,
Y. X.
, 2006, “
Evaporation/Boiling in Thin Capillary Wicks (I)—Wick Thickness Effects
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
1312
1319
.
11.
Li
,
C.
, and
Peterson
,
G. P.
, 2006, “
Evaporation/Boiling in Thin Capillary Wicks (II)—Effects of Volumetric Porosity and Mesh Size
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
1320
1328
.
12.
Liao
,
Q.
, and
Zhao
,
T. S.
, 2000, “
A Visual Study of Phase-Change Heat Transfer in a Two-Dimensional Porous Structure With a Partial Heating Boundary
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
7
), pp.
1089
1102
.
13.
Wang
,
Z.
,
Peng
,
X. F.
, and
Ochterbeck
,
J. M.
, 2004, “
Dynamic Bubble Behavior During Boiling in Bead-Packed Structures
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4771
4783
.
14.
Murgia
,
G.
,
Pisani
,
L.
,
Shula
,
A. K.
, and
Scott
,
K.
, 2003, “
A Numerical Model of a Liquid-Feed Solid Polymer Electrolyte DMFC and Its Experimental Validation
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A1231
A1245
.
15.
Wang
,
Z. H.
, and
Wang
,
C. Y.
, 2003, “
Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A508
A519
.
16.
Birgersson
,
E.
,
Nordlund
,
J.
,
Vynnycky
,
M.
,
Picard
,
C.
, and
Lindbergh
,
G.
, 2002, “
Reduced Two-Phase Model for Analysis of the Anode of a DMFC
,”
J. Electrochem. Soc.
0013-4651,
151
, p.
A21574
.
17.
Divisek
,
J.
,
Fuhrmann
,
J.
,
Gartner
,
K.
, and
Jung
,
R.
, 2003, “
Performance Modeling of a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A811
A825
.
18.
Rice
,
J.
, and
Faghri
,
A.
, 2006, “
A Transient, Multi-Phase and Multi-Component Model of a New Passive DMFC
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4804
4820
.
19.
Yang
,
W. W.
,
Zhao
,
T. S.
, and
Xua
,
C.
, 2007, “
Three-Dimensional Two-Phase Mass Transport Model for Direct Methanol Fuel Cells
,”
Electrochim. Acta
0013-4686,
53
, pp.
853
862
.
20.
Tüber
,
K.
,
Pócza
,
D.
, and
Hebling
,
C.
, 2003, “
Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell
,”
J. Power Sources
0378-7753,
124
, pp.
403
414
.
21.
Yang
,
X. G.
,
Zhang
,
F. Y.
,
Lubawy
,
A. L.
, and
Wang
,
C. Y.
, 2004, “
Visualization of Liquid Water Transport in a PEFC
,”
Electrochem. Solid-State Lett.
1099-0062,
7
, pp.
A408
A411
.
22.
Yang
,
H.
,
Zhao
,
T. S.
, and
Ye
,
Q.
, 2005, “
In Situ Visualization Study of CO2 Gas Bubble Behavior in DMFC Anode Flow Fields
,”
J. Power Sources
0378-7753,
139
, pp.
79
90
.
23.
Ozaki
,
K.
, 1995, “
Pumping Mechanism Using Periodic Phase Changes of a Fluid
,”
Proceedings of the IEEE Micro Electro Mechanical Systems
, Amsterdam, Netherlands, pp.
31
36
.
24.
Jun
,
T. K.
, and
Kim
,
C. J.
, 1998, “
Valveless Pumping Using Traversing Vapor Bubbles in Microchannels
,”
J. Appl. Phys.
0021-8979,
83
, pp.
5658
5664
.
25.
Wang
,
H.
,
Peng
,
X. F.
,
Christopher
,
D. M.
,
Lin
,
W. K.
, and
Pan
,
C.
, 2005, “
Investigation of Bubble-Top Jet Flow During Subcooled Boiling on Wires
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
485
494
.
26.
Drazin
,
P. G.
, 2002,
Introduction to Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge, England
.
27.
Rohsenow
,
W. M.
, 1962, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME, Ser. B
0022-0817,
84
, pp.
969
976
.
28.
Dhir
,
V. K.
, and
Catton
,
I.
, 1982, “
Boiling in a Porous Bed
,”
Appl. Sci. Res.
0003-6994,
38
, pp.
69
76
.
29.
Zuber
,
N.
, 1959, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” AEC Report No. AECU-4439.
30.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
31.
Fluent, Inc., 2006,
Fluent 6.3. User’s Guide
,
Fluent Inc.
,
Ann Arbor, MI
.
32.
Pillapakkam
,
S. B.
,
Singh
,
P.
,
Blackmore
,
D.
, and
Aubry
,
N.
, 2007, “
Transient and Steady State of a Rising Bubble in a Viscoelastic Fluid
,”
J. Fluid Mech.
0022-1120,
589
, pp.
215
252
.
33.
Ramaswamy
,
C.
,
Joshi
,
Y.
,
Nakayama
,
W.
, and
Johnson
,
W. B.
, 2002, “
High-Speed Visualization of Boiling From an Enhanced Structure
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
4761
4771
.
You do not currently have access to this content.