A generalized form of the ballistic-diffusive equations (BDEs) for approximate solution of the Boltzmann Transport equation (BTE) for phonons is formulated. The formulation presented here is new and general in the sense that, unlike previously published formulations of the BDE, it does not require a priori knowledge of the specific heat capacity of the material. Furthermore, it does not introduce artifacts such as media and ballistic temperatures. As a consequence, the boundary conditions have clear physical meaning. In formulating the BDE, the phonon intensity is split into two components: ballistic and diffusive. The ballistic component is traditionally determined using a viewfactor formulation, while the diffusive component is solved by invoking spherical harmonics expansions. Use of the viewfactor approach for the ballistic component is prohibitive for complex large-scale geometries. Instead, in this work, the ballistic equation is solved using two different established methods that are appropriate for use in complex geometries, namely the discrete ordinates method (DOM) and the control angle discrete ordinates method (CADOM). Results of each method for solving the BDE are compared against benchmark Monte Carlo results, as well as solutions of the BTE using standalone DOM and CADOM for two different two-dimensional transient heat conduction problems at various Knudsen numbers. It is found that standalone CADOM (for BTE) and hybrid CADOM-P1 (for BDE) yield the best accuracy. The hybrid CADOM-P1 is found to be the best method in terms of computational efficiency.

References

1.
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 1999, “
Phonon Scattering in Silicon Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
(
20
), pp.
3005
3007
.
2.
Tien
,
C. L.
,
Majumdar
,
A.
, and
Gerner
,
F. M.
, eds., 1998,
Microscale Energy Transport
,
Taylor & Francis
,
London
.
3.
Bird
,
G. A.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Oxford University Press
,
Oxford
.
4.
Mazumder
,
S.
, and
Kersch
,
A.
, 2000, “
A Fast Monte-Carlo Scheme for Thermal Radiation in Semiconductor Processing Applications
,”
Numer. Heat Transfer, B
,
37
(
2
), pp.
185
199
.
5.
Maltby
,
J. D.
and
Burns
,
P. J.
, 1991, “
Performance, Accuracy, and Convergence in a Three-Dimensional Monte Carlo Radiative Heat Transfer Simulation
,”
Numer. Heat Transfer, B
,
19
(
2
), pp.
191
209
.
6.
Fischetti
,
M. V.
and
Laux
,
S. E.
, 1993, “
Monte Carlo Study of Electron Transport in Silicon Inversion Layers
,”
Phys. Rev. B
,
48
(
4
), pp.
2244
2274
.
7.
Jacoboni
,
C.
, and
Reggiani
,
L.
, 1983, “
The Monte Carlo Method for the Solution of Charge Transport in Semiconductors With Applications to Covalent Materials
,”
Rev. Mod. Phys.
,
55
(
3
), pp.
642
705
.
8.
Mazumder
,
S.
, and
Majumdar
,
A.
, 2001, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
J. Heat Transfer
,
123
, pp.
749
759
.
9.
Lacroix
,
D.
,
Joulain
,
K.
, and
Lemonnier
,
D.
, 2005, “
Monte Carlo Transient Phonon Transport in Silicon and Germanium at Nanoscale
,”
Phys. Rev. B
,
72
,
064305
(1–11).
10.
Mittal
,
A.
, and
Mazumder
,
S.
, 2010, “
Monte Carlo Study of Phonon Heat Conduction in Silicon Thin Films Including Contributions of Optical Phonons
,”
J. Heat Transfer
,
132
,
052402
.
11.
Narumanchi
,
S. V. J.
, 2003, “
Simulation of Heat Transport in Sub-Micron Conduction
,” PhD. dissertation, Department of Mechanical Engineering, Carnegie Mellon University.
12.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2004, “
Sub-Micron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization
,”
J. Heat Transfer
,
126
, pp.
946
955
.
13.
Murthy
,
J. Y.
,
Narumanchi
,
S. V. J.
,
Pascual-Gutierrez
,
J. A.
,
Wang
,
T.
,
Ni
,
C.
, and
Mathur
,
S. R.
, 2005, “
Review of Multi-Scale Simulation in Sub-Micron Heat Transfer
”,
Int. J. Multiscale Comput. Eng.
,
3
, pp.
5
32
14.
Fiveland
,
W.
, 1988;, “
Three-Dimensional Radiative Heat Transfer Solutions by the Discrete Ordinates Method
,”
J. Thermophys. Heat Transfer
,
2
(
4
), pp.
309
316
.
15.
Raithby
,
G. D.
, and
Chui
,
E. H.
, 1990, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
J. Heat Transfer
,
112
(
2
), pp.
415
423
.
16.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
, 1994, “
Finite-Volume Method for Radiative Heat Transfer
,”
J. Thermophys. Heat Transfer
,
8
, pp.
419
425
.
17.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
, 1993, “
Ray Effect and False Scattering in the Discrete Ordinates Method
,”
Numer. Heat Transfer, B
,
24
, pp.
373
389
18.
Gaskell
,
P.
H, and
Lau
,
A. K. C.
, 1988, “
Curvature-Compensated Convective Transport: SMART, A New Boundedness Preserving Transport Algorithm
,”
Int. J. Numer. Methods Fluids
,
8
, pp.
617
641
19.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
New York
.
20.
Ravishankar
,
M.
,
Mazumder
,
S.
, and
Kumar
,
A.
, 2010, “
Finite-Volume Formulation and Solution of the P3 Equations of Radiative Transfer on Unstructured Meshes
,”
J. Heat Transfer
,
132
,
023402
.
21.
Modest
,
M. F.
, and
Yang
,
J.
, 2008, “
Elliptic PDE Formulation and Boundary Conditions of the Spherical Harmonics Method of Arbitrary Order for General Three-Dimensional Geometries
,”
J. Quant. Spectr. Radiat. Transfer
,
109
, pp.
1641
1666
.
22.
Olfe
,
D. B.
, 1967, “
A Modification of the Differential Approximation for Radiative Transfer
,”
AIAA J.
,
5
(
4
), pp.
638
643
.
23.
Modest
M. F.
, 1989, “
The Modified Differential Approximation for Radiative Transfer in General Three-Dimensional Media
,”
J. Thermophys. Heat Transfer
,
3
(
3
), pp.
283
288
24.
Chen
,
G.
, 2001, “
Ballistic-Diffusive Heat Conduction Equations
,”
Phys. Rev. Lett.
,
86
, pp.
2297
2230
.
25.
Chen
,
G.
, 2002, “
Ballistic-Diffusive Equations for Transient Heat Conduction From Nano to Macroscales
,”
J. Heat Transfer
,
124
, pp.
320
328
.
26.
Yang
,
R.
,
Chen
,
G.
,
Laroche
,
M.
, and
Taur
,
Y.
, 2005, “
Simulation of Nanoscale Multidimensional Transient Heat Conduction Problems Using Ballistic-Diffusive Equations and Phonon Boltzmann Equation
,”
J. Heat Transfer
,
127
, pp.
298
306
.
27.
Ravishankar
,
M.
,
Mazumder
,
S.
, and
Sankar
,
M.
, 2010, “
Application of the Modified Differential Approximation for Radiative Transfer to Arbitrary Geometry
,”
J. Quant. Spectr. Radiat. Transfer
,
111
, pp.
2052
2069
.
28.
Kittel
,
C.
, 1986,
Introduction to Solid State Physics
, 6th ed.,
Wiley
,
New York
.
29.
Majumdar
,
A.
, 1993, “
Microscale Heat Transfer in Dielectric Thin Films
,”
J. Heat Transfer
,
115
, pp.
7
16
.
30.
Whitaker
,
S.
, 1983,
Fundamental Principles of Heat Transfer
,
Krieger Publishing Company
,
Melbourne, FL
.
31.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 1998, “
Finite-Volume Method for Radiative Heat Transfer Using Unstructured Meshes
,”
J. Thermophys. Heat Transfer
,
12
(
3
), pp.
313
321
.
32.
Saad
,
Y.
, 2003,
Iterative Methods for Sparse Linear Systems
, 2nd ed.,
SIAM, Philadelphia
,
PA
.
33.
Murthy
J. Y.
, and
Mathur
,
S. R.
, 2003, “
Ballistic-Diffusive Approximation for Phonon Transport Accounting for Polarization and Dispersion
,” ASME Paper No. HT2003–47491.
You do not currently have access to this content.