This paper presents a solution to the control (stabilization) problem of temperature distribution in spherical shells with spatially varying properties. The desired temperature distribution satisfies the steady-state heat conduction equation. For the spherical shell under consideration, it is assumed that material properties such as thermal conductivity, density, and specific heat capacity may vary in radial, polar, and azimuthal directions of the spherical shell; the governing heat conduction equation of the shell is a second-order partial differential equation. Using Lyapunov’s theorem, it is shown how to obtain boundary heat flux required for producing a desired steady-state distribution of the temperature. Finally, numerical simulation is provided to verify the effectiveness of the proposed method such that by applying the boundary transient heat flux, in-domain distributed temperature converges to its desired steady-state temperature.

References

1.
Huang
,
C. H.
, and
Li
,
C. Y.
, 2003, “
A Three-Dimensional Optimal Control Problem in Determining the Boundary Control Heat Fluxes
,”
Heat Mass Transfer
,
39
(
7
), pp.
589
598
.
2.
Payan
,
S.
,
Sarvari
,
S.
, and
Ajam
,
H.
, 2009, “
Inverse Boundary Design of Square Enclosures With Natural Convection
,”
Int. J. Therm. Sci.
,
48
(
4
), pp.
682
690
.
3.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R., R.
, 1985,
Inverse Heat Conduction
,
Wiley
,
New York
.
4.
Scheuing
,
J.
, and
Tortorelli
,
D.
, 1996, “
Inverse Heat Conduction Problem Solution Via Second Order Design Sensitivities and Newton’s Method
,”
Inverse Probl. Sci. Eng.
,
2
(
3
), pp.
227
262
.
5.
Dulikravich
,
G. S.
, and
Martin
,
T. J.
, 1996, “
Inverse Shape and Boundary Condition Problems and Optimization in Heat Conduction
,”
Advances in Numerical Heat Transfer, Vol. 1
,
W.
Minkowycz
, and
E.
Sparrow
, eds.,
Taylor & Francis
,
Washington, DC
, pp.
381
426
.
6.
Boskovic
,
D. M.
, and
Kirstic
,
M.
, 2001, “
Boundary Control of an Unstable Heat Equation Via Measurement of Domain-Advanced Temperature
,”
IEEE Trans. Autom. Control
,
46
(
12
), pp.
2022
2028
.
7.
Rastgoftar
,
H.
,
Eghtesad
,
M.
, and
Khayatian
,
A.
, 2010, “
Boundary Control of Large Amplitude Vibration of Anisotropic Composite Laminated Plates
,”
ASME J. Vibr. Acoust.
,
132
(
6
),
061009
.
8.
Rastgoftar
,
H.
,
Eghtesad
,
M.
, and
Khayatian
,
A.
, 2008, “
Boundary Control of Vibration of Symmetric Composite Laminated Plates
,”
Proceedings of 17th IFAC World Congress
, Seoul, S. Korea.
9.
Sladek
,
J.
,
Sladek
,
V.
, and
Zhang
,
C. H.
, 2003, “
Transient Heat Conduction Analysis in Functionally Graded Materials by the Meshless Local Boundary Integral Equation Method
,”
Comput. Mater. Sci.
,
28
, pp.
494
504
.
10.
Miyamoto
,
Y.
,
Kaysser
,
W. A.
,
Rabin
,
B. H.
,
Kawasaki
,
A.
, and
Ford
,
R. G.
, 1999,
Functionally Graded Materials: Design, Processing and Applications
,
Kluwer
,
Dordrecht, The Netherlands
.
11.
Marin
,
L.
, 2005, “
Numerical Solution of the Cauchy Problem for Steady-State Heat Transfer in Two-Dimensional Functionally Graded Materials
,”
Int. J. Solids Struct.
,
42
, pp.
4338
4351
.
12.
Chen
,
B.
,
Tong
,
L.
,
Gu
,
Y.
,
Zhang
,
H.
, and
Ochoa
,
O.
, 2004, “
Transient Heat Transfer Analysis of Functionally Graded Materials Using Adaptive Precise Time Integration and Graded Finite Elements
,”
Numer. Heat Transfer, Part B
,
45
, pp.
181
200
.
13.
Wang
,
B. L.
, and
Tian
,
Z. H.
, 2005, “
Application of Finite Element-Finite Difference Method to the Determination of Transient Temperature Field in Functionally Graded Materials
,”
Finite Elem. Anal. Design
,
41
, pp.
335
349
.
14.
Sutradhar
,
A.
, and
Paulino
,
G. H.
, 2004, “
The Simple Boundary Element Methods for Transient Heat Conduction Analysis in Functionally Graded Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
4511
4539
.
15.
Qian
,
L. F.
, and
Batra
,
R. C.
, 2005, “
Three-Dimensional Transient Heat Conduction in a Functionally Graded Thick Plate With a Higher-Order Plate Theory and a Meshless Local Petrov–Galerkin Method
,”
Comput. Mech.
,
35
, pp.
214
226
.
16.
Ching
,
H. K.
, and
Yen
,
S. C.
, 2006, “
Transient Thermoelastic Deformations of 2D Functionally Graded Strips Under Nonuniformly Convective Heat Supply
,”
Compos. Struct.
,
73
, pp.
381
393
.
17.
Wang
,
H.
,
Qin
,
Q. H.
, and
Kang
,
Y. L.
, 2006, “
A Meshless Model for Transient Heat Conduction in Functionally Graded Materials
,”
Comput. Mech.
,
38
, pp.
51
60
.
18.
Golbahar
Haghighi
,
M. R.
,
Eghtesad
,
M.
,
Necsulescu
,
D. S.
, and
Malekzade
,
P.
, 2010, “
Temperature Control of Functionally Graded Plates Using a Feedforward-Feedback Controller Based on the Inverse Solution and Proportional-Derivative Controller
,”
Eng. Convers. Manage.
,
D1
, pp.
140
146
.
19.
Cho
,
J. R.
, and
Oden
,
J. T.
, 2000, “
Functionally Graded Materials: A Parametric Study on Thermal-Stress Characteristics Using the Crank–Nicolson–Galerkin Scheme
,”
Comput. Methods Appl. Mech. Eng.
,
188
, pp.
17
38
.
20.
Rastgoftar
,
H.
,
Eghtesad
,
M.
, and
Khayatian
,
A.
, 2010, “
Boundary Control of Temperature Distribution in a Rectangular Functionally Graded Material Plate
,”
ASME J. Heat Transfer
,
133
(
2
),
021304
.
21.
Watanabe
,
Y.
, and
Momose
,
I.
, 2004, “
Magnetically Graded Materials Fabricated by Inhomogeneous Heat Treatment of Deformed Stainless Steel
,”
Ironmaking Steelmaking
,
31
(
3
), pp.
265
268
.
22.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
23.
Barbalat
,
I.
, 1959, “
Systemes d’equations differentielles d’oscillations nonLineares
,”
Rev. Math. Pures Appl.
,
4
, pp.
267
270
.
24.
Zubov
,
V. L.
, 1964,
Methods of A. M. Liapunov and Their Application
, P. Noordhoff, Gorning, The Netherlands (English translation).
You do not currently have access to this content.