Porous sintered microstructures are critical to the functioning of passive heat transport devices such as heat pipes. The topology and microstructure of the porous wick play a crucial role in determining the thermal performance of such devices. Three sintered copper wick samples employed in commercial heat pipes are characterized in this work in terms of their thermal transport properties––porosity, effective thermal conductivity, permeability, and interfacial heat transfer coefficient. The commercially available samples of nearly identical porosities (∼61% open volume) are CT scanned at 5.5 μm resolution, and the resulting image stack is reconstructed to produce high-quality finite volume meshes representing the solid and interstitial pore regions, with a conformal mesh at the interface separating these two regions. The resulting mesh is then employed for numerical analysis of thermal transport through fluid-saturated porous sintered beds. Multiple realizations are employed for statistically averaging out the randomness exhibited by the samples under consideration. The effective thermal conductivity and permeability data are compared with analytical models developed for spherical particle beds. The dependence of effective thermal conductivity of sintered samples on the extent of sintering is quantified. The interfacial heat transfer coefficient is compared against a correlation from the literature based on experimental data obtained with spherical particle beds. A modified correlation is proposed to match the results obtained.

References

1.
Faghri
,
A.
, 1995,
Heat Pipe Science and Technology
,
Taylor & Francis
,
Washington DC
.
2.
Dunn
,
P. D.
, and
Reay
,
D. A.
, 1973, “
The heat pipe
,”
Phys. Technol.
,
4
, p.
187
.
3.
Garimella
S. V.
,
Joshi
Y. K.
,
Bar-Cohen
A.
,
Mahajan
R.
,
Toh
,
K. C.
,
Carey
,
V. P.
,
Baelmans
,
M.
,
Lohan
,
J.
,
Sammakia
,
B.
, and
Andros
,
F.
, 2003, “
Thermal Challenges in Next Generation Electronic Systems-Summary of panel Presentations and Discussions
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
569
575
.
4.
Weibel
,
J. A.
,
Garimella
,
S. V.
, and
North
,
M. T.
, 2010, “
Characterization of Evaporation and Boiling from Sintered Powder Wicks Fed by Capillary Action
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4204
4215
.
5.
Dullien
,
F. A. L.
, 1979,
Porous Media, Fluid Transport and Pore Structure
,
Academic
,
New York
.
6.
Lin
,
Y. Y.
,
Semenic
,
T.
, and
Catton
,
I.
, 2005, “
Thermophysical Properties of Monoporous Sintered Copper
,”
Summer Heat Transfer Conference
,
ASME
,
New York, CA
, pp.
17
23
.
7.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 2009, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,”
J. Appl. Phys.
,
33
(
10
), pp.
3125
3131
.
8.
Landauer
,
R.
, 2009, “
The Electrical Resistance of Binary Metallic Mixtures
,”
J. Appl. Phys.
,
23
(
7
), pp.
779
784
.
9.
Kirkpatrick
,
S.
, 1973, “
Percolation and Conduction
,”
Rev. Modern Phys.
,
45
(
4
), pp.
574
588
.
10.
Carson
,
J. K.
,
Lovatt
,
S. J.
,
Tanner
,
D. J.
, and
Cleland
,
A. C.
, 2005, “
Thermal Conductivity Bounds for Isotropic, Porous Materials
,”
Int. J. Heat Mass Transfer
,
48
(
11
), pp.
2150
2158
.
11.
Ergun
,
S.
, and
Orning
,
A. A.
, 1949, “
Fluid Flow Through Randomly Packed Columns and Fluidized Beds
,”
Ind. Eng. Chem.
,
41
(
6
), pp.
1179
1184
.
12.
Macdonald
,
I. F.
,
El-Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
, 1979, “
Flow Through Porous Media––The Ergun Equation Revisited
,”
Ind. Eng. Chem. Fundam.
,
18
(
3
), pp.
199
208
.
13.
Vafai
,
K.
, 2005,
Handbook of Porous Media
,
CRC Press
,
Boca Raton, FL
, p.
41
.
14.
Kaviany
,
M.
, 2002,
Principles of Heat Transfer
,
Wiley-Interscience
,
New York
.
15.
Wakao
,
N.
, and
Kagei
,
S.
, 1982,
Heat and Mass Transfer in Packed Beds
,
Gordon and Breach Science
,
New York
.
16.
Ranjan
,
R.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2009, “
Analysis of the Wicking and Thin-Film Evaporation Characteristics of Microstructures
,”
J. Heat Transfer
,
131
, p.
101001
.
17.
Bodla
K. K.
,
Murthy
J. Y.
, and
Garimella
S. V.
, 2010, “
Microtomography-Based Simulation of Transport through Open-Cell Metal Foams
,”
Numer. Heat Transfer, Part A: Appl.
,
58
(
7
), pp.
527
544
.
18.
Tabor
,
G.
,
Young
,
P. G.
,
West
,
T. B.
, and
Benattayallah
,
A.
, 2007, “
Mesh Construction from Medical Imaging for Multiphysics Simulation: Heat Transfer and Fluid Flow in Complex Geometries
,”
Eng. Appl. Comput. Fluid Mech.
,
1
(
2
), pp.
126
135
.
19.
ScanIP, ScanFE, and ScanCAD Tutorial Guide for SIMPLEWARE 3.1, Simpleware Ltd., Exeter, UK, 2009.
20.
Users Guide for FLUENT 6.0, Fluent Inc., 2002.
21.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2006, “
Direct Simulation of Transport in Open-Cell Metal Foams
,”
J. Heat Transfer
,
128
(
8
), pp.
793
799
.
22.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2010, “
Resistance Network-Based Thermal Conductivity Model for Metal Foams
,”
Comput. Mater. Sci.
,
50
(
2
), pp.
622
632
.
23.
User’s Guide for AVIZO 6.2, 2009.
You do not currently have access to this content.