Biporous media consisting of microscale pin fins separated by microchannels are examined as candidate structures for the evaporator wick of a vapor chamber heat pipe. The structures are fabricated out of silicon using standard lithography and etching techniques. Pores which separate microscale pin fins are used to generate high capillary suction, while larger microchannels are used to reduce overall flow resistance. The heat transfer coefficient is found to depend on the area coverage of a liquid film with thickness on the order of a few microns near the meniscus of the triple phase contact line. We manipulate the area coverage and film thickness by varying the surface area-to-volume ratio through the use of microstructuring. Experiments are conducted for a heater area of 1 cm2 with the wick in a vertical orientation. Results are presented for structures with approximately same porosities, fixed microchannel widths w ≈ 30 μm and w ≈ 60 μm, and pin fin diameters ranging from d = 3–29 μm. The competing effects of increase in surface area due to microstructuring and the suppression of evaporation due to reduction in pore scale are explored. In some samples, a transition from evaporative heat transfer to nucleate boiling is observed. While it is difficult to identify when the transition occurs, one can identify regimes where evaporation dominates over nucleate boiling and vice versa. Heat transfer coefficients of 20.7 (±2.4) W/cm2-K are attained at heat fluxes of 119.6 (±4.2) W/cm2 until the wick dries out in the evaporation dominated regime. In the nucleate boiling dominated regime, heat fluxes of 277.0 (±9.7) W/cm2 can be dissipated by wicks with heaters of area 1 cm2, while heat fluxes up to 733.1 (±103.4) W/cm2 can be dissipated by wicks with smaller heaters intended to simulate local hot-spots.

References

1.
Mahajan
,
R.
,
Chiu
,
C.
, and
Chrysler
,
G.
, 2006, “
Cooling a Microprocessor Chip
,”
Proc. IEEE
,
94
(
8
), pp.
1476
1486
.
2.
Majumdar
,
A.
, 2009, “
Thermoelectric Devices: Helping Chips to Keep Their Cool
,”
Nat. Nanotechnol.
,
4
(
4
), pp.
214
215
.
3.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
,
Keshavarzi
,
A.
,
Prasher
,
R.
,
Patel
,
C.
,
Bhavnani
,
S. H.
,
Venkatasubramanian
,
R.
,
Mahajan
,
R.
,
Joshi
,
Y.
,
Sammakia
,
B.
,
Myers
,
B.
A,
Chorosinski
,
L.
,
Baelmans
,
M.
,
Sathyamurthy
,
P.
, and
Raad
,
P. E.
, 2008, “
Thermal Challenges in Next-Generation Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
4
), pp.
801
815
.
4.
Prasher
,
R. S.
, 2003, “
A Simplified Conduction Based Modeling Scheme for Design Sensitivity Study of Thermal Solution Utilizing Heat Pipe and Vapor Chamber Technology
,”
ASME J. Electron. Packag.
,
125
(
3
), pp.
378
385
.
5.
Faghri
,
A.
, 1995,
Heat Pipe Science and Technology
,
Taylor and Francis
,
Washington, DC
.
6.
Khrustalev
,
D.
, and
Faghri
,
A.
, 1995, “
Heat Transfer During Evaporation on Capillary-Grooved Structures of Heat Pipes
,”
ASME J. Heat Transfer
,
117
(
3
), pp.
740
747
.
7.
Stephan
,
P. C.
, and
Busse
,
C. A.
, 1992, “
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
383
391
.
8.
Xu
,
X.
, and
Carey
,
V. P.
, 1990, “
Film Evaporation From a Micro-Grooved Surface—An Approximate Heat Transfer Model and Its Comparison With Experimental Data
,”
J. Thermophys.
,
4
(
4
), pp.
512
520
.
9.
Hanlon
,
M. A.
, and
Ma
,
H. B.
, 2003, “
Evaporation Heat Transfer in Sintered Porous Media
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
644
652
.
10.
Davis
,
T. W.
, and
Garimella
,
S. V.
, 2008, “
Thermal Resistance Measurement Across a Wick Structure Using a Novel Thermosyphon Test Chamber
,”
Exp. Heat Transfer
,
21
(
2
), pp.
143
154
.
11.
Cao
,
X. L.
,
Cheng
,
P.
, and
Zhao
,
T. S.
, 2002, “
Experimental Study of Evaporative Heat Transfer in Sintered Copper Bidispersed Wick Structures
,”
J. Thermophys. Heat Transfer
,
16
, pp.
547
552
.
12.
Semenic
,
T.
,
Lin
,
Y.
,
Catton
,
I.
, and
Sarraf
,
D.
, 2008, “
Use of Biporous Wicks to Remove High Heat Fluxes
,”
Appl. Therm. Eng.
,
28
(
4
), pp.
278
283
.
13.
Zhao
,
Y.
, and
Chen
,
C.
, 2007, “
Vaporization Heat Transfer in Sintered Copper Wicks With Micro-Grooves in Heat Pipe Evaporators
,”
Thermal Challenges in Next Generation Electronic Systems
,
S. V.
Garimella
and
A. S.
Fleischer
, eds.,
Millpress
,
Rotterdam
.
14.
Liao
,
Q.
, and
Zhao
,
T. S.
, 1999, “
Evaporative Heat Transfer in a Capillary Structure Heated by a Grooved Block
,”
J. Thermophys. Heat Transfer
,
13
(
1
), pp.
126
133
.
15.
Li
,
C.
,
Peterson
,
G. P.
, and
Wang
,
Y.
, 2006, “
Evaporation/Boiling in Thin Capillary Wicks (l)—Wick Thickness Effects
,”
ASME J. Heat Transfer
,
128
(
12
), pp.
1312
1319
.
16.
Li
,
C.
, and
Peterson
,
G. P.
, 2006, “
Evaporation/Boiling in Thin Capillary Wicks (II)—Effects of Volumetric Porosity and Mesh Size
,”
ASME J. Heat Transfer
,
128
(
12
), pp.
1320
1328
.
17.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1999,
Experimentation and Uncertainty Analysis for Engineers
,
John Wiley and Sons
,
New York
.
18.
Wang
,
H.
,
Garimella
,
S.
, and
Murthy
,
J.
, 2007, “
Characteristics of an Evaporating Thin Film in a Microchannel
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3933
3942
.
19.
Dhir
,
V. K.
, 1998, “
Boiling Heat Transfer
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
365
401
.
20.
Bretherton
,
F. P.
, 2006, “
The Motion of Long Bubbles in Tubes
,”
J. Fluid Mech.
,
10
, pp.
166
188
.
21.
Ajaev
,
V. S.
, and
Homsy
,
G. M.
, 2006, “
Modeling Shapes and Dynamics of Confined Bubbles
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
277
307
.
22.
Cai
,
Q.
, and Chen, C.-L., 2010, “
Design and Test of Carbon Nanotube Biwick Structure for High-Heat-Flux Phase Change Heat Transfer
,”
ASME J. Heat Transfer
,
132
(
5
), p.
052403
.
23.
Weibel
,
J. A.
,
Garimella
S.
V., and
North
,
M. T.
, 2010, “
Characterization of Evaporation and Boiling From Sintered Powder Wicks Fed by Capillary Action
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4204
4215
.
24.
Potash
,
M.
, and
Wayner
,
P. C.
, 1972, “
Evaporation From a Two-Dimensional Extended Meniscus
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1851
1863
.
25.
Wayner
,
P. C.
, 1999, “
Intermolecular Forces in Phase-Change Heat Transfer: 1998 Kern Award Review
,”
AIChE J.
,
45
(
10
), pp.
2055
2068
.
26.
Plawsky
,
J.
,
Ojha
,
M.
,
Chatterjee
,
A.
, and
Wayner
,
P.
, 2009, “
Review of the Effects of Surface Topography, Surface Chemistry, and Fluid Physics on Evaporation at the Contact Line
,”
Chem. Eng. Commun.
,
196
(
5
), pp.
658
696
.
27.
Morris
,
S. J. S.
, 2003, “
The Evaporating Meniscus in a Channel
,”
J. Fluid Mech.
,
494
, pp.
297
317
.
28.
Dhavaleswarapu
,
H. K.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
, 2009, “
Microscale Temperature Measurements Near the Triple Line of an Evaporating Thin Liquid Film
,”
ASME J. Heat Transfer
,
131
(
6
), p.
061501
.
29.
Ranjan
,
R.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2009, “
Numerical Study of Evaporation Heat Transfer From the Liquid-Vapor Interface in Wick Microstructures
,”
Proceedings of ASME-IMECE, IMECE 2009-11326
,
Lake Buena Vista
, Nov. 13–19.
You do not currently have access to this content.