Optical force offers a promise of being applied as a noninvasive manipulation tool for microscopic objects without physical contact. Particle control in a microfluidic system is achieved by optics showing advantages over electric or the other methods. With optics, the fluid need not to be contamination free and there is no need for electrode fabrication. Particles can experience different forces depending on the optical configuration. The scattering force is predominant under parallel or gently focused irradiation, while the gradient force is predominant in tightly focused irradiation. This paper reports the experimental and theoretical investigations of the potential of optical scattering force for particle control technique in a microfluidic system with a light-absorbing liquid. The light-absorption of the incident laser beam in the liquid causes a temperature rise and induces the corresponding property changes of liquid and particles. The experiments were presented for particle migration using the scattering force exerted by a compact diode laser with a wavelength of 635 nm. The absorption of the light in the liquid was controlled by the concentration of dye substance added in a buffer solution. The velocities of polystyrene particles with a diameter of 1.9 μm and the temperature distributions of the liquid under laser irradiation were measured by tracking their movement and by temperature-sensitive fluorophore, respectively. When there is no light absorption in the liquid, the migration velocity of particles under the laser beam is linearly increased with the increase of the laser power, in agreement with the calculations based on ray optics theory. In the case of light-absorbing liquid, the migration speed of particles experiencing the optical force indicates a nonlinear increase as the laser power increases. This enhancement mainly attributes to the temperature-sensitive change of liquid viscosity resulting in a reduction of viscous drag for migrating particles. An appropriate arrangement of light absorption leads to an enhancement in the photophoretic velocity of particles, and eventual performance promotion of particle separation and/or sorting using the optical force.

References

1.
Tabeling
,
P.
, 2005,
Introduction to Microfluidics
,
Oxford University Press
,
New York
, pp.
45
68
.
2.
Stone
,
H. A.
,
Strook
,
A. D.
, and
Ajdari
,
A.
, 2004, “
Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
381
411
.
3.
Li
,
P. C. H.
, and
Harrison
,
D. J.
, 1997, “
Transport, Manipulation, and Reaction of Biological Cells On-Chip Using Electrokinetic Effects
,”
Anal. Chem.
,
69
(
8
), pp.
1564
1568
.
4.
Pamme
,
N.
, 2007, “
Continuous Flow Separations in Microfluidic Devices
,”
Lab Chip
,
7
, pp.
1644
1659
.
5.
Yamada
,
M.
,
Nakashima
,
M.
, and
Seki
,
M.
, 2004, “
Pinched Flow Fractionation: Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel
,”
Anal. Chem.
,
76
(
18
), pp.
5465
5471
.
6.
Huang
,
L. R.
,
Cox
,
E. C.
,
Austin
,
R. H.
, and
Sturm
,
J. C.
, 2003, “
Tilted Brownian Ratchet for DNA Analysis
,”
Anal. Chem.
,
75
(
24
), pp.
6963
6967
.
7.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
, 2005,
Microflows and Nanoflows: Fundamentals and Simulation
,
Springer
,
New York
, pp.
292
302
.
8.
Fuh
,
C. B.
, and
Chen
,
S. Y.
, 1998, “
Magnetic Split-Flow Thin Fractionation: New Technique for Separation of Magnetically Susceptible Particles
,”
J. Chromatogr. A
,
813
, pp.
313
324
.
9.
Jones
,
T. B.
, 1995,
Electromechanics of Particles
,
Cambridge University Press
,
New York
, pp.
74
79
.
10.
Nilsson
,
A.
,
Petersson
,
F.
,
Jönsson
,
H.
, and
Laurell
,
T.
, 2004, “
Acoustic Control of Suspended Particles in Micro Fluidic Chips
,”
Lab Chip
,
4
, pp.
131
135
.
11.
Golden
,
J. P.
,
Kim
,
J. S.
,
Erickson
,
J. S.
,
Hilliard
,
L. R.
,
Howell
,
P. B.
,
Anderson
,
G. P.
,
Nasir
,
M.
, and
Ligler
,
F. S.
, 2009, “
Multi-Wavelength Microflow Cytometer Using Groove-Generated Sheath Flow
,”
Lab Chip
,
9
, pp.
1942
1950
.
12.
Voldman
,
J.
,
Gray
,
M. L.
,
Toner
,
M.
, and
Schmidt
,
M. A.
, 2002, “
A Microfabrication-Based Dynamic Array Cytometer
,”
Anal. Chem.
,
74
, pp.
3984
3990
.
13.
Neuman
,
K. C.
, and
Block
,
S. M.
, 2004, “
Optical Trapping
,”
Rev. Sci. Instrum.
,
75
(
9
), pp.
2787
2809
.
14.
Wu
,
M. C.
,
Lin
,
L. Y.
,
Lee
,
S. S.
, and
Pister
,
K. S. J.
, 1995, “
Micromachined Free-Space Integrated Micro-optics
,”
Sens. Actuators, A
,
50
, pp.
127
134
.
15.
Ashkin
,
A.
, 1970, “
Acceleration and Trapping of Particles by Radiation Pressure
,”
Phys. Rev. Lett.
,
24
(
4
), pp.
156
159
.
16.
Kuo
,
S. C.
, and
Sheetz
,
M. P.
, 1993, “
Force of Single Kinesin Molecules Measured With Optical Tweezers
,”
Science
,
260
(
5105
), pp.
232
234
.
17.
Greulich
,
K. O.
,
Pilarczyk
,
G.
,
Hoffmann
,
A.
,
Hörste
,
G. M. Z.
,
Shäfter
,
B.
,
Uhl
,
V.
, and
Monoajembashi
,
S.
, 2000, “
Micromanipulation by Laser Microbeam and Optical Tweezers: From Plant Cells to Single Molecles
,”
J. Microsc.
,
198
(
3
), pp.
182
187
.
18.
Applegate
, Jr.,
R. W.
,
Squier
,
J.
,
Vestad
,
T.
,
Oakey
,
J.
,
Marr
,
D. W. M.
,
Bado
,
P.
,
Dugan
,
M. A.
, and
Said
,
A. A.
, 2006, “
Microfluidic Sorting System Based on Optical Waveguide Integration and Diode Laser Bar Trapping
,”
Lab. Chip.
,
6
, pp.
422
426
.
19.
Perroud
,
T. D.
,
Kaiser
,
J. N.
,
Sy
,
J. C.
,
Lane
,
T. W.
,
Branda
,
C. S.
,
Singh
,
A. K.
, and
Patel
,
K. D.
, 2008, “
Microfluidic-Based Cell Sorting of Francisella Tularensis Infected Macrophages Using Optical Forces
,”
Anal. Chem.
,
80
, pp.
6365
6372
.
20.
Birkbeck
,
A.
,
Flynn
,
R. A.
,
Ozkan
,
M.
,
Song
,
D.
,
Gross
,
M.
, and
Esener
,
S. C.
, 2003, “
VCSEL Arrays as Micromanipulators in Chip-Based Biosystems
,”
Biomed. Microdev.
,
5
(
1
), pp.
47
54
.
21.
MacDonald
,
M. P.
,
Spalding
,
G. C.
, and
Dholakia
,
K.
, 2003, “
Microfluidic Sorting in an Optical Lattice
,”
Nature (London)
,
426
, pp.
421
424
.
22.
Ozkan
,
M.
,
Wang
,
M.
,
Ozkan
,
C.
,
Flynn
,
R.
,
Birkbeck
,
A.
, and
Esener
,
S.
, 2003, “
Optical Manipulation of Objects and Biological Cells in Microfluidic Device
,”
Biomed. Microdevices
,
5
(
1
), pp.
61
67
.
23.
Hoi
,
S. K.
,
Udalagama
,
C.
,
Sow
,
C.-H.
,
Watt
,
F.
, and
Bettiol
,
A. A.
, 2009, “
Microfluidic Sorting System Based on Optical Switching
,”
Appl. Phys. B
,
97
, pp.
859
865
.
24.
Hart
,
S. J.
,
Terray
,
A.
,
Arnold
,
J.
, and
Leski
,
T. A.
, 2007, “
Sample Concentration Using Optical Chromatography
,”
Opt. Express
,
15
(
5
), pp.
2724
2731
.
25.
Celliers
,
P. M.
, and
Conica
,
J.
, 2000, “
Measurement of Localized Heating in the Focus of an Optical Trap
,”
Appl. Opt.
,
39
(
19
), pp.
3396
3407
.
26.
Peterman
,
E. J. G.
,
Gittes
,
F.
, and
Schmidt
,
C. F.
, 2003, “
Laser-Induced Heating in Optical Traps
,”
Biophys. J.
,
84
, pp.
1308
1316
.
27.
Seol
,
Y.
,
Carpenter
,
A. E.
, and
Perkins
,
T. T.
, 2006, “
Gold Nanoparticles: Enhanced Optical Trapping and Sensitivity Coupled With Significant Heating
,”
Opt. Lett.
,
31
(
16
), pp.
2429
2431
.
28.
Kyrsting
,
A.
,
Bendix
,
P. M.
,
Stamou
,
D. G.
, and
Oddershede
,
L. B.
, 2011, “
Heat Profiling of Three-Dimensionally Optically Trapped Gold Nanoparticles Using Vesicle Cargo Release
,”
Nano. Lett.
,
11
, pp.
888
892
.
29.
Bialkowski
,
S. E.
, 1995,
Photothermal Spectroscopy Methods for Chemical Analysis
,
Wiley
,
Toronto
, pp.
49
116
.
30.
Monjutaro
,
H.
,
Tanaka
,
M.
, and
Watarai
,
H.
, 2003, “
Periodic Expansion-Contraction Motion of Photoabsorbing Organic Droplets During Laser Photophoretic Migration in Water
,”
Chem. Lett.
,
31
(
8
), pp.
788
789
.
31.
Tanaka
,
M.
,
Monjutaro
,
H.
, and
Watarai
,
H.
, 2004, “
Laser Photophoretic Migration With Periodic Expansion-Contraction Motion of Photo-Absorbing Microemulsion Droplets in Water
,”
Langmuir
,
20
(
25
), pp.
10791
10797
.
32.
Ashkin
,
A.
,
Dziedzic
,
J. M.
,
Bjorkholm
,
J. E.
, and
Chu
,
S.
, 1986, “
Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles
,”
Opt. Lett.
,
11
(
5
), pp.
288
290
.
33.
Kim
,
S. B.
, and
Kim
,
S. S.
, 2003, “
Radiation Forces on Spheres in Loosely Focused Gaussian Beam: Ray-Optics Regime
,”
J. Opt. Soc. Am. B
,
23
(
5
), pp.
897
903
.
34.
Schiebener
,
P.
,
Straub
,
J.
,
Levelt Sengers
,
J. M. H.
, and
Gallagher
,
J. S.
, 1990, “
Refractive Index of Water and Steam as Function of Wavelength, Temperature and Density
,”
J. Phys. Chem. Ref. Data
,
19
(
3
), pp.
677
717
.
35.
Moshrefzadeh
,
R. S.
,
Radcliffe
,
M. D.
,
Lee
,
T. C.
, and
Mohapatra
,
S. K.
, 1992, “
Temperature Dependence of Index of Refraction of Polymeric Waveguides
,”
J. Lightwave Technol.
,
10
(
4
), pp.
420
425
.
36.
Viswanath
,
D. S.
,
Ghosh
,
T. K.
,
Parasad
,
D. H. L.
,
Dutt
,
N. V. K.
, and
Rani
,
K. Y.
, 2007,
Viscosity of Liquids
,
Springer
,
New York
, pp.
119
125
.
37.
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
,
Beebe
,
D. J.
, and
Adrian
,
R. J.
, 1998, “
A Particle Image Velocimetry System for Microfluidics
,”
Exp. Fluids
,
25
(
4
), pp.
316
319
.
38.
Devasenathipathy
,
S.
,
Santiago
,
J. G.
, and
Takehara
,
K.
, 2002, “
Micro-PTV Particle Tracking Techniques for Electrokinetic Microchannel Flows
,”
Anal. Chem.
,
74
, pp.
3704
3713
.
39.
Motosuke
,
M.
,
Akutsu
,
D.
, and
Honami
,
S.
, 2009, “
Temperature Measurement of Microfluids With High Temporal Resolution by Laser-Induced Fluorescence
,”
J. Mech. Sci. Technol.
,
23
, pp.
1821
1828
.
40.
Martin
,
M. M.
, and
Lindqvist
,
L.
, 1975, “
The pH Dependence of Fluorescein Fluorescent
,”
J. Lumin.
,
10
, pp.
381
390
.
41.
Kim
,
S. B.
,
Yoon
,
S. Y.
,
Sung
,
H. J.
, and
Kim
,
S. S.
, 2008, “
Resolution of Cross-Type Optical Particle Separation
,”
Anal. Chem.
,
80
(
15
), pp.
6023
6028
.
42.
Japan Society of Thermophysical Properties
ed., 2008,
Thermophysical Properties Handbook
,
Yokendo
,
Japan
, pp.
70
75
.
43.
Motosuke
,
M.
,
Shimakawa
,
J.
,
Akutsu
,
D.
, and
Honami
,
S.
, 2010, “
Noncontact Manipulation of Microflow by Photothermal Control of Viscous Force
,”
Int. J. Heat Fluid Flow
,
31
(
6
), pp.
1005
1011
.
You do not currently have access to this content.