This paper focuses on two forced convection methods—steady jet flow and pulsating flow by synthetic jets—that can be used in applications requiring significant amounts of heat removal from electronics components. Given the dearth of available data, we have experimentally investigated steady jets and piezoelectrically driven synthetic jets that provide pulsating flow of air at a high coefficient of performance. To mimic a typical electronics component, a 25.4-mm × 25.4-mm vertical heated surface was used for heat removal. The impingement heat transfer, in the form of Nusselt number, is reported for both steady and unsteady jets over Reynolds numbers from 100 to 3000. The effect of jet-to-plate surface distance on the impingement heat transfer is also investigated. Our results show that synthetic jets can provide significantly higher cooling than steady jets in the Reynolds number range of 100 to 3000. We attribute the superior performance of synthetic jets to vortex shedding associated with the unsteady flow.

References

1.
“Apple—iPhone5
,” http://www.apple.com/iphone/
3.
Petroski
,
J.
,
Arik
,
M.
, and
Gursoy
,
M.
,
2008
, “
Piezoelectric Fans: Heat Transfer Enhancements or Electronics Cooling
,”
ASME-JSME Thermal Engineering and Summer Heat Transfer Conference 2008
,
Jacksonville, FL
, Aug. 10–14, HT-2008-56405.
4.
Açikalin
,
T.
,
Sauciuc
, I
.
, and
Garimella
,
S. V.
,
2005
, “
Piezoelectric Actuators for Low-Form-Factor Electronics Cooling
,”
The ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of Micro, Nano, and Electronic Systems (InterPACK’05)
,
San Francisco
, July 17–22, IPACK2005-73288.
5.
Arik
,
M.
,
2008
, “
Local Heat Transfer Coefficients of a High Frequency Synthetic Jets During Impingement Cooling Over Flat Surfaces
,”
Heat Transfer Eng.
,
29
(
9
) pp.
763
773
.10.1080/01457630802053769
6.
Lee
,
C. Y.
, and
Glodstein
,
D. B.
,
2001
, “
DNS of Micro Jets for Turbulent Boundary Layer Control
,”
AIAA 39th Aerospace Sciences Meeting and Exhibition
,
Reno, NV
, AIAA Paper No. 2001-1013.
7.
Garg
,
J.
,
Arik
,
M.
,
Weaver
,
S.
, and
Saddoughi
,
S.
,
2004
, “
Micro Fluidic Jets for Thermal Management of Electronics
,”
Proceedings of ASME Heat Transfer/Fluids Engineering Summer Conference
,
Charlotte, NC
, July 11–15, FED F-346.
8.
Erbas
,
N.
,
Koklu
,
M.
, and
Baysal
,
O.
,
2005
, “
Synthetic Jets for Thermal Management of Microelectronic Chips
,”
Proceedings of ASME IMECE 2005
,
Orlando, FL
, IMECE 2005-81419.
9.
Seeley
,
C. E.
,
Arik
,
M.
,
Hedeen
,
R.
,
Utturkar
,
Y.
,
Wetzel
,
T.
, and
Shih
,
M.
,
2006
, “
Coupled Acoustic and Heat Transfer Modeling of A Synthetic Jet
,”
47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Newport, RI
, May 1–4, pp.
1
13
.
10.
Arik
,
M.
,
Petroski
,
J.
,
Bar-Cohen
,
A.
, and
Demiroglu
,
M.
,
2007
, “
Energy Efficiency of Low Form Factor Cooling Devices
,”
ASME International Mechanical Engineering Congress and Exposition
, Nov. 11–15,
Seattle, WA
, IMECE2007-41275.
11.
Gutmark
,
E.
,
Yassour
,
Y.
, and
Wolfshtein
,
M.
,
1982
, “
Acoustic Enhancement of Heat Transfer in Plane Channels
,”
Proceedings of the Seventh International Heat Transfer Conference
,
Munich, Germany
, Sep. 6–10, pp.
441
445
.
12.
Yassour
,
Y.
,
Stricker
,
J.
, and
Wolfshtein
,
M.
,
1986
, “
Heat Transfer from a Pulsating Jet
,”
Proceedings of the Eighth International Conference
,
San Francisco, CA
, Aug. 17–22, Vol.
3
, pp.
1183
1186
.
13.
Minichiello
,
A. L.
,
Hartley
,
J. G.
,
Glezer
,
A.
, and
Black
,
W. Z.
,
1997
, “
Thermal Management of Sealed Electronic Enclosures Using Synthetic Jet Technology
,”
Adv. Electron. Packag.
,
19
(
2
), pp.
1809
1812
.
14.
Utturkar
,
Y.
,
Arik
,
M.
, and
Gursoy
,
M.
,
2006
, “
An Experimental and Computational Sensitivity Analysis of Synthetic Jet Cooling Performance
,”
IMECE2006 ASME International Mechanical Engineering Congress and Exposition
,
Chicago, IL
, Nov. 5–10, IMECE2006-13743.
15.
Garg
,
J.
,
Arik
,
M.
,
Weaver
,
S.
,
Wetzel
,
T.
, and
Saddoughi
,
S.
,
2005
, “
Advanced Localized Air Cooling With Synthetic Jets
,”
ASME J. Electron. Packag.
,
127
, pp.
503
5115
.10.1115/1.2065727
16.
Arik
,
M.
,
Utturkar
,
Y.
, and
Gursoy
,
M.
,
2007
, “
Interaction of Synthetic Jet Cooling Performance With Gravity and Buoyancy Driven Flows
,”
ASME InterPACK’07, Vancouver, British Columbia
,
Canada
, July 8–12.
17.
Arik
,
M.
,
2007
, “
An Investigation Into Feasibility of Impingement Heat Transfer and Acoustic Abatement of Meso Scale Synthetic Jets
,”
Appl. Therm. Eng.
,
27
(
8-9
), pp.
1483
1494
.10.1016/j.applthermaleng.2006.09.027
18.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer between Impinging Gas Jets and Solid Surface
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
19.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
20.
Glynn
,
C.
, and
Murray
,
D. B.
,
2005
, “
Jet Impinging Cooling in Microscale
,”
ECI International Conference on Heat Transfer and Fluid Flow in Microscale
,
Castelvecchio Pascoli
, Sep. 25–30.
21.
Lin
,
Z. H.
,
Chou
,
Y. J.
, and
Hung
,
Y. H.
,
1997
, “
Heat Transfer Behaviors of a Confined Slot Jet Impingement
,”
Int. J. Heat Mass Transfer
,
40
(
5
), pp.
1095
1107
.10.1016/0017-9310(96)00135-4
22.
Katti
,
V.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Study and Theoretical Analysis of Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet From a Circular Straight Pipe Nozzle
,”
Int. J. Heat Mass Transfer
,
51
, pp.
4480
4495
.10.1016/j.ijheatmasstransfer.2007.12.024
23.
Nirmalkumar
,
M.
,
Katti
, V
.
, and
Prabhu
,
S. V.
,
2011
, “
Local Heat Transfer Distribution on a Smooth Flat Plate Impinged by a Slot Jet
,”
Int. J. Heat Mass Transfer
,
54
, pp.
727
738
.10.1016/j.ijheatmasstransfer.2010.09.030
24.
Sagot
,
B.
,
Antonini
,
G.
,
Christgen
,
A.
, and
Buron
,
F.
,
2008
, “
Jet Impingement Heat Transfer on a Flat Plate at a Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
47
, pp.
1610
1619
.10.1016/j.ijthermalsci.2007.10.020
25.
Zhou
,
D. W.
, and
Lee
,
S.-J.
,
2007
, “
Forced Convective Heat Transfer With Impinging Rectangular Jets
,”
Int. J. Heat Mass Transfer
,
50
, pp.
1916
1926
.10.1016/j.ijheatmasstransfer.2006.09.022
26.
Choo
,
K. S.
,
Youn
,
Y. J.
,
Kim
,
S. J.
, and
Lee
,
D. H.
,
2009
, “
Heat Transfer Characteristics of a Micro-scale Impinging Slot Jet
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3169
3175
.10.1016/j.ijheatmasstransfer.2009.02.015
27.
Choo
,
K. S.
, and
Kim
,
S. J.
,
2009
, “
Air Jet Impingement Heat Transfer at Low Nozzle-to-Plate Spacings Under a Fixed Pumping Power Condition
,”
Proceedings of the ASME 2009 Heat Transfer Summer Conference
, HT2009-88189.
28.
Schroeder
, V
. P.
, and
Garimella
,
S. V.
,
1998
, “
Heat Transfer From a Discrete Heat Source in Confined Air Jet Impingement
,”
Proceedings of 11th IHTC
, 5, pp.
451
456
.
29.
Lee
,
J.
, and
Lee
,
S.-J.
,
2000
, “
The Effect of Nozzle Configuration on Stagnation Region Heat Transfer Enhancement of Axisymmetric Jet Impingement
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3497
3509
.10.1016/S0017-9310(99)00349-X
30.
Pan
,
Y.
,
Stevens
,
S.
, and
Webb
,
B. W.
,
1992
, “
Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetric Impinging Free Surface Liquid Jets: Part 2—Local Heat Transfer
,”
ASME J. Heat Transfer
,
114
, pp.
880
885
.10.1115/1.2911896
31.
Brignoni
,
L. A.
, and
Garimella
,
S. V.
,
2000
, “
Effects of Nozzle-Inlet Chamfering on Pressure Drop and Heat Transfer in Confined Air Jet Impingement
,”
Int. J. Heat Mass Transfer
,
43
, pp.
1133
1139
.10.1016/S0017-9310(99)00207-0
32.
Koseoglu
,
M. F.
, and
Baskaya
,
S.
,
2010
, “
The Role of Jet Inlet Geometry in Impinging Jet Heat Transfer, Modeling and Experiments
,”
Int. J. Therm. Sci.
49
, pp.
1417
1426
.10.1016/j.ijthermalsci.2010.02.009
33.
Gulati
,
P.
,
Katti
, V
.
, and
Prabhu
,
S. V.
,
2009
, “
Influence of Nozzle Shape on Local Heat Transfer Distribution Between Flat Surface and Impinging Air Jet
,”
Int. J. Therm. Sci.
,
48
, pp.
602
617
.10.1016/j.ijthermalsci.2008.05.002
34.
Mittal
,
R.
, and
Rampunggoon
,
P.
,
2002
, “
On Virtual Aero-Shaping Effect of Synthetic Jets
,”
Phys. Fluids
,
14
(
4
), pp.
1533
1536
.10.1063/1.1453470
35.
Arik
,
M.
, and
Icoz
,
T.
,
2012
, “
Predicting Heat Transfer From Unsteady Synthetic Jets
,”
ASME J. Heat Transfer
,
134
, p.
081901
.10.1115/1.4005740
36.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.10.1016/0894-1777(88)90043-X
37.
Dieck
,
R. H.
,
Steele
,
W. G.
, and
Osolsobe
,
G.
,
2005
, “
Test Uncertainty
,” American Society of Mechanical Engineers, New York, ASME PTC 19.1-2005.
You do not currently have access to this content.