The pool boiling heat transfer characteristics of smooth single crystal and densely packed cylindrical cavity surfaces were investigated using two highly wetting fluids, perfluoro-n-hexane (FC-72) and n-hexane. Three single crystal copper surfaces and five undoped single crystal silicon surfaces with different plane orientations were considered. In addition, silicon surfaces with densely packed cylindrical cavities with diameters ranging from 9 to 75 μm, depth ranging from 9 to 20 μm, and spacing ranging from 75 to 600 μm were tested for comparison. It is observed that the copper single crystal surfaces show increasing heat transfer coefficient with decreasing atomic planar density. The single crystal silicon surfaces show increasing heat transfer coefficient with increasing atomic planar density. Plausible molecular scale mechanisms are discussed. In contrast, the silicon surfaces seeded with cylindrical cavities having diameters of 27 μm or less generally yield higher heat transfer coefficients than the single crystal silicon surfaces. A decrease in the cavity spacing results in a larger number of cavities on the surface, and the heat transfer coefficient increases as a result. Cavity depths of 6 and 20 μm result in the same heat transfer coefficient irrespective of cavity diameter. The nucleation site density for the cylindrical cavity surfaces is measured and reported at low superheat using a novel imaging technique.

References

1.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase Change Phenomena
,
Taylor & Francis
,
London
.
2.
Qi
,
Y.
, and
Klausner
,
J. F.
,
2006
, “
Comparison of Nucleation Site Density for Pool Boiling and Gas Nucleation
,”
ASME J. Heat Transfer
,
128
(
1
), pp.
13
20
.10.1115/1.2130399
3.
Bon
,
B.
,
Guan
,
C.-K.
, and
Klausner
,
J. F.
,
2011
, “
Heterogeneous Nucleation on Ultra Smooth Surfaces
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
746
752
.10.1016/j.expthermflusci.2010.05.003
4.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2009
, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
12
), p. 121009.10.1115/1.3220144
5.
Chang
,
J. Y.
,
You
,
S. M.
, and
Haji-Sheikh
,
A.
,
1998
, “
Film Boiling Incipience at the Departure From Natural Convection on Flat, Smooth Surfaces
,”
ASME J. Heat Transfer
,
120
(
2
), pp.
402
409
.10.1115/1.2824264
6.
Parker
,
J. L.
, and
El-Genk
,
M. S.
,
2005
, “
Enhanced Saturation and Subcooled Boiling of FC-72 Dielectric Liquid
,”
Int. J. Heat Mass Transfer
,
48
(
18
), pp.
3736
3752
.10.1016/j.ijheatmasstransfer.2005.03.011
7.
Theofanous
,
T. G.
,
Tu
,
J. P.
,
Dinh
,
A. T.
, and
Dinh
,
T. N.
,
2002
, “
The Boiling Crisis Phenomenon: Part I: Nucleation and Nucleate Boiling Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
26
(
6–7
), pp.
775
792
.10.1016/S0894-1777(02)00192-9
8.
Pioro
, I
. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
,
2004
, “
Nucleate Pool-Boiling Heat Transfer. I: Review of Parametric Effects of Boiling Surface
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5033
5044
.10.1016/j.ijheatmasstransfer.2004.06.019
9.
Harrison
,
W. B.
, and
Levine
,
Z.
,
1958
, “
Wetting Effects on Boiling Heat Transfer: The Copper-Stearic Acid System
,”
AIChE J.
,
4
(
4
), pp.
409
412
.10.1002/aic.690040406
10.
Torii
,
D.
,
Ohara
,
T.
, and
Ishida
,
K.
,
2010
, “
Molecular-Scale Mechanism of Thermal Resistance at the Solid-Liquid Interfaces: Influence of Interaction Parameters Between Solid and Liquid Molecules
,”
ASME J. Heat Transfer
,
132
(
1
), p. 012402.10.1115/1.3211856
11.
Qi
,
Y.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
2004
, “
Role of Surface Structure in Heterogeneous Nucleation
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3097
3107
.10.1016/j.ijheatmasstransfer.2004.02.019
12.
Hutter
,
C.
,
Kenning
,
D. B. R.
,
Sefiane
,
K.
,
Karayiannis
,
T. G.
,
Lin
,
H.
,
Cummins
,
G.
, and
Walton
,
A. J.
,
2010
, “
Experimental Pool Boiling Investigations of FC-72 on Silicon With Artificial Cavities and Integrated Temperature Microsensors
,”
Exp. Therm. Fluid Sci.
,
34
(
4
), pp.
422
433
.10.1016/j.expthermflusci.2009.03.010
13.
Zhang
,
L.
, and
Shoji
,
M.
,
2003
, “
Nucleation Site Interaction in Pool Boiling on the Artificial Surface
,”
Int. J. Heat Mass Transfer
,
46
(
3
), pp.
513
522
.10.1016/S0017-9310(02)00291-0
14.
Sato
,
T.
,
Koizumi
,
Y.
, and
Ohtake
,
H.
,
2006
, “
Experimental Study on Fundamental Phenomena of Boiling by Using Heat Transfer Surface With Well-Defined Cavities Created by MEMS: The Effect of Spacing Between Cavities
,”
ASME Conf. Proc.
, ICNMM2006,
2006
(
47608
), pp.
67
74
.
15.
Heled
,
Y.
,
Ricklis
,
J.
, and
Orell
,
A.
,
1970
, “
Pool Boiling From Large Arrays of Artificial Nucleation Sites
,”
Int. J. Heat Mass Transfer
,
13
(
3
), pp.
503
516
.10.1016/0017-9310(70)90146-8
16.
Chih
Kuang
,
Y.
,
Ding
Chong
,
L.
, and
Tsung
Chieh
,
C.
,
2006
, “
Pool Boiling Heat Transfer on Artificial Micro-Cavity Surfaces in Dielectric Fluid FC-72
,”
J. Micromech. Microeng.
,
16
(
10
), p.
2092
.10.1088/0960-1317/16/10/024
17.
Qi
,
Y.
, and
Klausner
,
J. F.
,
2005
, “
Heterogeneous Nucleation With Artificial Cavities
,”
ASME J. Heat Transfer
,
127
(
11
), pp.
1189
1196
.10.1115/1.2039111
18.
Messina
,
A. D.
, and
Park
,
E. L.
, Jr.
,
1981
, “
Effects of Precise Arrays of Pits on Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
24
(
1
), pp.
141
145
.10.1016/0017-9310(81)90102-2
19.
Miller
,
W. J.
,
Gebhart
,
B.
, and
Wright
,
N. T.
,
1990
, “
Effects of Boiling History on a Microconfigured Surface in a Dielectric Liquid
,”
Int. Commun. Heat Mass Transfer
,
17
(
4
), pp.
389
398
.10.1016/0735-1933(90)90058-R
20.
Bon
,
B.
, and
Klausner
,
J.
,
2011
, “
Pool Boiling Heat Transfer of Highly Wetting Fluids on Smooth Metallic Surfaces
,”
ASME Conf. Proc.
, ASME/JSME 2011 8th Thermal Engineering Joint Conference,
2011
(
38921
), p.
T10182
.
21.
Bon
,
B.
,
2011
, “
The Role of Surface Microstructure and Topography in Pool Boiling Heat Transfer
,” Ph.D. dissertation, University of Florida, Gainesville, FL.
22.
Simons
,
J. H.
,
1964
,
Fluorine Chemistry
,
Academic Press
,
New York
.
23.
Mei
,
R.
,
Chen
,
W.
, and
Klausner
,
J. F.
,
1995
, “
Vapor Bubble Growth in Heterogeneous Boiling—I. Formulation
,”
Int. J. Heat Mass Transfer
,
38
(
5
), pp.
909
919
.10.1016/0017-9310(94)00195-2
24.
Mei
,
R.
,
Chen
,
W.
, and
Klausner
,
J. F.
,
1995
, “
Vapor Bubble Growth in Heterogeneous Boiling—II. Growth Rate and Thermal Fields
,”
Int. J. Heat Mass Transfer
,
38
(
5
), pp.
921
934
.10.1016/0017-9310(94)00196-3
25.
Chen
,
W. C.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
1995
, “
A Simplified Model for Predicting Vapor Bubble Growth Rates in Heterogeneous Boiling
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
976
980
.10.1115/1.2836319
26.
Vitos
,
L.
,
Ruban
,
A. V.
,
Skriver
,
H. L.
, and
Kollár
,
J.
,
1998
, “
The Surface Energy of Metals
,”
Surf. Sci.
,
411
(
1–2
), pp.
186
202
.10.1016/S0039-6028(98)00363-X
27.
Lang
,
N. D.
, and
Kohn
,
W.
,
1970
, “
Theory of Metal Surfaces: Charge Density and Surface Energy
,”
Phys. Rev. B
,
1
(
12
), pp.
4555
4568
.10.1103/PhysRevB.1.4555
28.
Lang
,
N. D.
, and
Kohn
,
W.
,
1971
, “
Theory of Metal Surfaces: Work Function
,”
Phys. Rev B
,
3
(
4
), pp.
1215
1223
.10.1103/PhysRevB.3.1215
29.
Monnier
,
R.
, and
Perdew
,
J. P.
,
1978
, “
Surfaces of Real Metals by the Variational Self-Consistent Method
,”
Phys. Rev. B
,
17
(
6
), pp.
2595
2611
.10.1103/PhysRevB.17.2595
30.
Smoluchowski
,
R.
,
1941
, “
Anisotropy of the Electronic Work Function of Metals
,”
Phys. Rev.
,
60
(
9
), pp.
661
674
.10.1103/PhysRev.60.661
31.
Trasatti
,
S.
,
1985
, “
Crystal Face Specificity of Double Layer Structure and Electrocatalysis
,”
Mater. Chem. Phys.
,
12
(
6
), pp.
507
527
.10.1016/0254-0584(85)90037-9
32.
Zhao
,
J.-J.
,
Duan
,
Y.-Y.
,
Wang
,
X.-D.
, and
Wang
,
B.-X.
,
2011
, “
Effects of Superheat and Temperature-Dependent Thermophysical Properties on Evaporating Thin Liquid Films in Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1259
1267
.10.1016/j.ijheatmasstransfer.2010.10.026
33.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2008
, “
An Analytical Solution for the Total Heat Transfer in the Thin-Film Region of an Evaporating Meniscus
,”
Int J. Heat Mass Transfer
,
51
(
25–26
), pp.
6317
6322
.10.1016/j.ijheatmasstransfer.2008.06.011
34.
Ojha
,
M.
,
Chatterjee
,
A.
,
Dalakos
,
G.
,
Wayner
,
J. P. C.
, and
Plawsky
,
J. L.
,
2010
, “
Role of Solid Surface Structure on Evaporative Phase Change From a Completely Wetting Corner Meniscus
,”
Phys. Fluids
,
22
(
5
), p. 052101.10.1063/1.3392771
35.
Allen
,
P. H. G.
, and
Karayiannis
,
T. G.
,
1995
, “
Electrohydrodynamic Enhancement of Heat Transfer and Fluid Flow
,”
Heat Recovery Syst. CHP
,
15
(
5
), pp.
389
423
.10.1016/0890-4332(95)90050-0
36.
Ogata
,
J.
, and
Yabe
,
A.
,
1993
, “
Augmentation of Boiling Heat Transfer by Utilizing the EHD Effect—EHD Behaviour of Boiling Bubbles and Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
783
791
.10.1016/0017-9310(93)80054-X
37.
Zaghdoudi
,
M. C.
, and
Lallemand
,
M.
,
2000
, “
Study of the Behaviour of a Bubble in an Electric Field: Steady Shape and Local Fluid Motion
,”
Int J. Therm. Sci.
,
39
(
1
), pp.
39
52
.10.1016/S1290-0729(00)00190-2
38.
Zaghdoudi
,
M. C.
, and
Lallemand
,
M.
,
2001
, “
Nucleate Pool Boiling Under DC Electric Field
,”
Exp. Heat Transfer
,
14
(
3
), pp.
157
180
.10.1080/089161501301419588
39.
Gorla
,
R. S. R.
,
Gatica
,
J. E.
,
Ghorashi
,
B.
,
Ineure
,
P.
, and
Byrd
,
L. W.
,
2004
, “
Heat Transfer in a Thin Liquid Film in the Presence of an Electric Field
,”
Chem. Eng Commun.
,
191
(
5
), pp.
718
731
.10.1080/00986440490276038
40.
Yu Yan
,
J.
,
Hiroshi
,
O.
,
Masahide
,
I.
, and
Nariaki
,
H.
,
2010
, “
Wall Thermal Conductivity Effects on Nucleation Site Interaction During Boiling: An Experimental Study
,”
ASME Conf. Proc.
, 14th International Heat Transfer Conference,
2010
(
49361
), pp.
637
646
.
You do not currently have access to this content.