Coaxial thermocouple sensors are suitable for measuring highly transient surface heat fluxes because the response times of these sensors are very small (∼0.1 ms). These robust sensors have the flexibility of mounting them directly on the surface of any geometry. So, they have been routinely used in ground-based impulse facilities as temperature sensors where rapid changes in heat loads are expected on aerodynamic models. Subsequently, the surface heat fluxes are predicted from the transient temperatures by appropriate one-dimensional heat conduction modeling for semi-infinite body. In this backdrop, the purpose of this work is to design and fabricate K-type coaxial thermocouples in-house and calibrate them under similar nature of heat loads by using simple laboratory instruments. Here, two methods of dynamic calibration of coaxial thermocouples have been discussed, where the known step loads are applied through radiation and conduction modes of heat transfer. Using appropriate one dimensional heat conduction modeling, the surface heat fluxes are predicted from the measured temperature histories and subsequently compared with the input heat loads. The recovery of surface heat flux from laser based calibration experiment under-predicts by 4% from its true input heat load. Similarly, recovery of surface heat flux from the conduction mode calibration experiments under-predicts 6% from its true input value. Further, finite-element based numerical study is performed on the coaxial thermocouple model to obtain surface temperatures with same heat loads as used in the experiments. The recovery of surface temperatures from finite element simulation is achieved within an accuracy of ±0.3% from the experiment.

References

1.
Henze
,
M.
,
Bogdanic
,
L.
,
Muehlbauer
,
K.
, and
Schnieder
,
M.
,
2013
, “
Effect of the Biot Number on Metal Temperature of Thermal Barrier Coated Turbine Parts—Real Engine Measurements
,”
ASME J. Turbomach.
,
135
(
3
), p.
031029
.10.1115/1.4007510
2.
Lei
,
J. F.
, and
Will
,
H. A.
,
1998
, “
Thin Film Thermocouples and Strain Gauge Technologies for Engine Applications
,”
Sens. Actuators, A
,
65
, pp.
197
193
.10.1016/S0924-4247(97)01688-9
3.
Werschmoeller
,
D.
,
Xiaochun
,
L.
, and
Ehmann
,
K.
,
2012
, “
Measurement of Transient Tool Internal Temperature Fields During Hard Turning by Insert Embedded Thin Film Sensors
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061004
.10.1115/1.4007621
4.
Chester
,
N. L.
,
Wells
,
M. A.
, and
Prodanovic
,
V.
,
2012
, “
Effect of Inclination Angle and Flow Rate on the Heat Transfer During Bottom Jet Cooling of a Steel Plate
,”
ASME J. Heat Transfer
,
134
(
12
), p.
122201
.10.1115/1.4007127
5.
Vidal
,
R. J.
,
1956
, “
Model Instrumentation Techniques for Heat Transfer and Force Measurements in a Hypersonic Shock Tunnel
,” Cornell Aeronautical Laboratory, WADC TN 56-315.
6.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “
Heat Transfers Measurements in Short Duration Hypersonic Facilities
,” AGARDograph-AG-165.
7.
Sahoo
,
N.
, and
Peetala
,
R. K.
,
2010
, “
Transient Temperature Data Analysis for a Supersonic Flight Test
,”
ASME J. Heat Transfer
,
132
(
8
),
p. 084503
.10.1115/1.4001128
8.
Cardenas
,
C.
,
Fabris
,
D.
,
Tokairin
,
S.
,
Madriz
,
F.
, and
Yang
,
C. Y.
,
2012
, “
Thermoreflectance Measurement of Temperature and Thermal Resistance of Thin Film Gold
,”
ASME J. Heat Transfer
,
134
(
11
), p.
111401
.10.1115/1.4007068
9.
Menezes
,
V.
, and
Bhat
,
S.
,
2010
, “
A Coaxial Thermocouple for Shock Tunnel Applications
,”
Rev. Sci. Instrum.
,
81
(
10
), p.
104905
.10.1063/1.3494605
10.
Lorenz
,
M.
,
Horbach
,
T.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2013
, “
A Novel Measuring Technique Utilizing Temperature Sensitive Paint—Measurement Procedure, Validation, Application, and Comparison With Infrared Thermography
,”
ASME J. Turbomach.
,
135
(
3
), p.
031003
.10.1115/1.4006638
11.
Kumar
,
R.
,
Sahoo
,
N.
, and
Kulkarni
,
V.
,
2010
, “
Design, Fabrication and Calibration of Heat Transfer Gauges for Transient Measurement
,”
ASME Conference, Nov. 12–18, 2010
,
Vancouver, British Columbia, Canada
, IMECE2010.
12.
Kumar
,
R.
,
Sahoo
,
N.
,
Kulkarni
,
V.
, and
Singh
,
A.
,
2011
, “
Laser Based Calibration Technique for Thin Film Sensors for Short Duration Transient Measurements
,”
ASME J. Thermal Sci. Eng. Appl.
,
3
(
4
),
p. 044504
.10.1115/1.4005075
13.
Kumar
,
R.
,
Sahoo
,
N.
, and
Kulkarni
,
V.
,
2012
, “
Conduction Based Calibration of Handmade Platinum Thin Film Heat Transfer Gauges for Transient Measurements
,”
Int. J. Heat Mass Transfer
,
55
(
9
), pp.
2707
2713
.10.1016/j.ijheatmasstransfer.2012.01.026
14.
Olivier
,
H.
, and
Gronig
,
H.
,
1995
, “
Instrument Techniques of the Aachen Shock Tunnel TH2
,”
International Congress on Instrumentation in Aerospace Simulation Facilities, ICIASF 95
, July 18–21, Wright-Patterson AFB, CH3482-3489.
15.
Sanderson
,
S. R.
, and
Sturtevant
,
B.
,
2002
, “
Transient Heat Flux Measurement Using a Surface Junction Thermocouple
,”
Rev. Sci. Instrum.
,
73
(
7
), pp.
2781
2787
.10.1063/1.1484255
16.
Buttsworth
,
D. R.
,
2001
, “
Assessment of Effective Thermal Product of Surface Junction Thermocouples on Millisecond and Microsecond Time Scales
,”
Exp. Therm. Fluid Sci.
,
25
(
6
), pp.
409
429
.10.1016/S0894-1777(01)00093-0
17.
Gatowski
,
J. A.
,
Smith
,
M. K.
, and
Alkidas
,
A. C.
,
1989
, “
An Experimental Investigation of Surface Thermometry and Heat Flux
,”
Exp. Therm. Fluid Sci.
,
2
(
3
), pp.
280
285
.10.1016/0894-1777(89)90017-4
18.
Mohammed
,
H. A.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2011
, “
Dynamic Calibration and Performance of Reliable and Fast Response Temperature Probes in a Shock Tube Facility
,”
Exp. Heat Transfer
,
24
(
2
), pp.
109
132
.10.1080/08916152.2010.482752
19.
Smith
,
D. E.
,
Bubb
,
J. V.
,
Popp
,
O.
,
Diller
,
T. E.
, and
Hevey
,
S. J.
,
1999
, “
A Comparison of Radiation Versus Convection Calibration of Thin-Film Heat Flux Gauges
,”
Proceedings of the ASME Heat Transfer Division, HTD
, Vol.
364
(
4
), pp.
79
84
.
20.
Holmberg
,
D. G.
, and
Diller
,
T. E.
,
1995
, “
High-Frequency Heat Flux Sensor Calibration and Modeling
,”
ASME J. Fluids Eng.
,
117
(
4
), pp.
659
664
.10.1115/1.2817319
21.
Taler
,
J.
,
1996
, “
Theory of Transient Experimental Techniques for Surface Heat Transfer
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3733
3748
.10.1016/0017-9310(96)00015-4
22.
Sahoo
,
N.
, and
Peetala
,
R. K.
,
2011
, “
Transient Surface Heating Rates From a Nickel Film Sensor Using Inverse Analysis
,”
Int. J. Heat Mass Transfer
,
54
(
5
), pp.
1297
1302
.10.1016/j.ijheatmasstransfer.2010.11.029
23.
Chung
,
M.
, and
Brill
,
J. W.
,
1993
, “
Specific Heats of Type E Thermocouple Wires
,”
Rev. Sci. Instrum.
,
64
(
7
), pp.
2037
2038
.10.1063/1.1143945
24.
Shen
,
B.
,
Xiao
,
G.
,
Guo
,
C.
,
Malkin
,
S.
, and
Shin
,
A. J.
,
2008
, “
Thermocouple Fixation Method for Grinding Temperature Measurement
,”
ASME J. Manuf. Sci. Eng.
,
130
, p.
051014
.10.1115/1.2976142
25.
Mohammed
,
H.
,
Salleh
,
H.
, and
Yusoff
,
Z.
,
2008
, “
Design and Fabrication of Coaxial Thermocouple for Transient Heat Transfer Measurements
,”
Int. J. Heat Mass Transfer
,
35
(
7
), pp.
853
859
.10.1016/j.icheatmasstransfer.2008.03.009
26.
Sundqvist
,
B.
,
1992
, “
Thermal Diffusivity and Thermal Conductivity of Chromel, Alumel, and Constantan in the Range 100–450 K
,”
J. Appl. Phys.
,
72
(
2
), pp.
539
544
.10.1063/1.351885
27.
Piccini
,
E.
,
Guo
,
S. M.
, and
Jones
,
T. V.
,
2000
, “
The Development of a New Direct Heat Flux Gauge for Heat Transfer Facilities
,”
Meas. Sci. Technol.
,
11
(
4
), pp.
342
349
.10.1088/0957-0233/11/4/302
28.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
You do not currently have access to this content.