A metal microtextured thermal interface material (MMT-TIM) has been proposed to address some of the shortcomings of conventional TIMs. These materials consist of arrays of small-scale metal features that plastically deform when compressed between mating surfaces, conforming to the surface asperities of the contacting bodies and resulting in a low-thermal resistance assembly. The present work details the development of an accurate thermal model to predict the thermal resistance and effective thermal conductivity of the assembly (including contact and bulk thermal properties) as the MMT-TIMs undergo large plastic deformations. The main challenge of characterizing the thermal contact resistance of these structures was addressed by employing a numerical model to characterize the bulk thermal resistance and estimate the contribution of thermal contact resistance. Furthermore, a correlation that relates electrical and thermal contact resistance for these MMT-TIMs was developed that adequately predicted MMT-TIM properties for several different geometries. A comparison to a commercially available graphite TIM is made as well as suggestions for optimizing future MMT-TIM designs.

References

1.
Liu
,
J.
,
Michel
,
B.
,
Rencz
,
M.
,
Tantolin
,
C.
,
Sarno
,
C.
,
Miessner
,
R.
,
Schuett
,
K.-V.
,
Tang
,
X.
,
Demoustier
,
S.
, and
Ziaei
,
A.
,
2008
, “
Recent Progress of Thermal Interface Material Research—An Overview
,”
Proceedings of the 14th Workshop on Thermal Issues in ICs and Systems (THERMINIC)
,
Rome, Italy
, September 24-26.
2.
Chung
,
D. D. L.
,
2012
, “
Carbon Materials for Structural Self-Sensing, Electromagnetic Shielding and Thermal Interfacing
,”
Carbon
,
50
, pp.
3342
3353
.10.1016/j.carbon.2012.01.031
3.
McNamara
,
A. J.
,
Joshi
,
Y.
, and
Zhang
,
Z. M.
,
2012
, “
Characterization of Nanostructured Thermal Interface Materials—A review
,”
Int. J. Therm. Sci.
,
62
, pp.
2
11
.10.1016/j.ijthermalsci.2011.10.014
4.
Smalc
,
M.
,
Norley
,
J.
,
Reynolds
,
R. A.
,
Pachuta
,
R.
, and
Krassowski
,
D. W.
,
2013
, “
Advanced Thermal Interface Materials Using Natural Graphite
,”
Proceedings of the International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
Maui, HI, USA
, July 6–11.
5.
Smalc
,
M.
,
Shives
,
G.
,
Chen
,
G.
,
Guggari
,
S.
,
Norley
,
J.
, and
Reynolds
,
R. A.
,
2005
, “
Thermal Performance of Natural Graphite Heat Spreaders
,”
Proceedings of the International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
San Francisco, CA
, July 17–22.
6.
Smith
B.
,
Brunschwiler
,
T.
, and
Michel
,
B.
,
2009
, “
Comparison of Transient and Static Test Methods for Chip-to-Sink Thermal Interface Characterization
,”
Microelectron. J.
,
40
(
9
), pp.
1379
1386
.10.1016/j.mejo.2008.06.079
7.
Linderman
,
R.
,
Brunschwiler
,
T.
,
Smith
B.
, and
Michel
,
B.
,
2007
, “
High Performance Thermal Interface Technology Overview
,”
Proceedings of the 13th Workshop on Thermal Issues in ICs and Systems (THERMINIC)
, pp.
129
134
.
8.
Savija
,
I.
,
Culham
,
J. R.
,
Yovanovich
,
M. M.
, and
Marotta
,
E. E.
,
2003
, “
Review of Thermal Conductance Models for Joints Incorporating Enhancement Materials
,”
J. Thermophys. Heat Transfer
,
17
, pp.
43
52
.10.2514/2.6732
9.
Nguyen
,
J. J.
,
Bougher
,
T. L.
,
Pour Shahid Saeed Abadi
,
P.
,
Sharma
,
A.
,
Graham
,
S.
, and
Cola
,
B. A.
,
2013
, “
Postgrowth Microwave Treatment to Align Carbon Nanotubes
,”
J. Micro Nano-Manuf.
,
1
(
1
), p.
014501
.10.1115/1.4023162
10.
Kempers
,
R.
,
Frizzell
,
R.
,
Lyons
,
A.
, and
Robinson
,
A. J.
,
2009
, “
Development of a Metal Micro-Textured Thermal Interface Material
,”
ASME InterPACK Conference
, IPACK2009-89366,
San Francisco
, CA, July 8–12.
11.
Kempers
,
R.
,
Robinson
A. J.
, and
Lyons
,
A.
,
2009
, “
Characterization of Metal Micro-Textured Thermal Interface Materials
,”
Proceedings of the 15th Workshop on Thermal Issues in ICs and Systems (THERMINIC)
,
Leuven, Belgium
, October 7–9.
12.
Li
,
G.
,
Jinn
,
J. T.
,
Wu
,
W. T.
, and
Oh
,
S. I.
,
2001
, “
Recent Development and Application of Three-Dimensional Finite Element Modelling in Bulk Forming Processes
,”
J. Mater. Process. Technol.
,
113
, pp.
40
45
.10.1016/S0924-0136(01)00590-8
13.
Oh
,
S. I.
,
Wu
,
W. T.
,
Tang
,
J. P.
, and
Vedhanayagam
,
A.
,
1991
, “
Capabilities and Applications of FEM Code DEFORM: The Perspective of the Developer
,”
J. Mater. Process. Technol.
,
27
, pp.
25
42
.10.1016/0924-0136(91)90042-D
14.
Altan
,
T.
, and
Knoerr
,
M.
,
1992
, “
Application of the 2D Finite Element Method to Simulation of Cold-Forging Processes
,”
J. Mater. Process. Technol.
,
35
, pp.
275
302
.10.1016/0924-0136(92)90323-K
15.
Kempers
,
R.
,
Robinson
A. J.
,
Ahern
,
P.
, and
Lyons
,
A. M.
,
2012
, “
Modelling the Compressive Deformation of Metal Micro-Textured Thermal Interface Materials Using SEM Geometry Reconstruction
,”
Comput. Struct.
,
92–93
, pp.
216
228
.10.1016/j.compstruc.2011.11.001
16.
Madhusudana
,
C. V.
,
1996
,
Thermal Contact Conductance
,
Springer-Verlag
,
New York
.
17.
Yovanovich
,
M. M.
,
2005
, “
Four Decades of Research on Thermal Contact, Gap, and Joint Resistance in Microelectronics
,”
IEEE Transactions on Components and Packaging Technologies
,
28
, pp.
182
206
.10.1109/TCAPT.2005.848483
18.
Teertstra
,
P.
,
2007
, “
Thermal Conductivity and Contact Resistance Measurements for Adhesives
,”
Proceedings of InterPACK 2007
,
Vancouver, BC
, July 8–12.
19.
Braunovic
,
M.
,
Konchits
,
V. V.
, and
Myshkin
,
N. K.
,
2007
,
Electrical Contacts: Fundamental, Aplications and Technology
,
CRC Press
, Taylor & Francis, Boca Raton, FL.
20.
Jones
,
M. H.
,
Howells
,
R. I. L.
, and
Probert
,
S. D.
,
1968
, “
Solids in Static Contact
,”
Wear
,
12
, pp.
225
240
.10.1016/0043-1648(68)90284-6
21.
Woo
,
K. L.
, and
Thomas
,
T. R.
,
1980
, “
Contact of Rough Surfaces: A Review of Experimental Work
,”
Wear
,
58
, pp.
331
340
.10.1016/0043-1648(80)90162-3
22.
Filayev
,
A. T.
,
Kornilov
,
A. V.
, and
Wegrzyn
,
L.
,
1981
, “
Determination of the Actual Contact Area During Sliding Contact
,”
Wear
,
70
, pp.
259
263
.10.1016/0043-1648(81)90160-5
23.
Mizuhara
,
K.
, and
Ozawa
,
N.
,
1999
, “
Estimation of Thermal Contact Resistance Based on Electrical Contact Resistance Measurements
,”
Int. J. Japan Soc. Prec. Eng.
,
33
, pp.
59
61
.
24.
Kempers
,
R.
,
Kolodner
,
P.
,
Lyons
,
A.
, and
Robinson
,
A. J.
,
2009
, “
A High-Precision Apparatus for the Characterization of Thermal Interface Materials
,”
Rev. Sci. Instrum.
,
80
, p.
09511
.10.1063/1.3193715
25.
Keithley
,
2004
,
Low Level Measurements Handbook: Precision DC Current, Voltage, and Resistance Measurements
, 6th ed.,
Keithley Instruments Inc.
, Cleveland, OH, available at http://www.keithley.com/knowledgecenter/knowledgecenter_pdf/LowLevMsHandbk_1.pdf
26.
Marotta
,
E. E.
, and
Fletcher
,
L. S.
,
1996
, “
Thermal Contact Conductance of Selected Polymeric Materials
,”
J. Thermophys. Heat Transfer
,
10
, pp.
334
342
.10.2514/3.792
27.
Marotta
,
E. E.
, and
Fletcher
,
L. S.
,
2001
, “
Thermal Contact Conductance of Metal/Polymer Joints: An Analytical and Experimental Investigation
,”
J. Thermophys. Heat Transfer
,
15
, pp.
228
238
.10.2514/2.6598
28.
Marotta
,
E. E.
, and
Mazzuca
,
S. J.
,
2005
, “
Thermal Joint Conductance for Flexible Graphite Materials: Analytical and Experimental Study
,”
IEEE Trans. Compon. Packag. Technol.
,
28
, pp.
102
110
.10.1109/TCAPT.2004.843153
You do not currently have access to this content.